数理物質融合科学センター光量子計測器開発推進室発足会議

分光分析による表面物理化学

近藤剛弘

筑波大学 数理物質系 物質工学域
 筑波大学 数理物質融合科学センター (CiRfSE)
 物質変換材料部門

筑波大学:中村潤児教授、Guo研究員 中村近藤研究室のメンバーと卒業生 岡田晋教授

Web掲載用のため イントロダクションのスライドを 一部割愛いたします

Scanning tunneling microscope (STM)

Control voltages for piezotube Low temperature STM STM·STS計測では 固体表面の物理化学的な知見 特に物性や化学反応過程などを 原子分解能での顕微鏡観察と 局所分光計測で 明らかにすることが可能 (LDOS) call be illeasured

Background and motivation

Graphene shows specific physical and chemical properties among the graphitic materials due to its unique electronic structure

Graphene shows specific Landau levels under magnetic fields

Large energy difference of graphene Landau levels is known to lead to **Quantum Hall effects at** <u>room temperature</u>

Graphene Landau level appeared at B = 0 T

Landau levels appearance are ascribed to the strain-induced pseudo-magnetic fields

We have also observed Landau levels at B = 0T

D. Guo, T. Kondo, J. Nakamura, et al., Nature Communications 3 (2012) 1068

Our proposed "domain model" for pseudo magnetic fields

Gradient of on-site potentials results in inequivalent hopping

Recent progress

To prove the domain-model as another origin for the pseudo-magnetic field

We have observed Landau levels of bilayer graphene at the atomically flat area of nitrogen-doped graphite at B = 0 T

Experiment

1. Cleaning of HOPG surface

- (1) Cleaving HOPG at atmosphere
- (2) 940K annealing (30 min.) in UHV

2. Nitrogen doping

(1) Nitrogen ion bombardment (N/C : <0.04, 0.04, 1.9 at %)
(2) 940 K annealing (30 min.)

N1s XPS spectrum of nitrogen doped graphite

Graphitic nitrogen (positively charged N) is dominant

Two types of defect are observed !

T. Kondo J. Nakamura et al., Phys. Rev. B 86 (2012) 035436

STS spectra on nitrogen doped graphite

STM and STS on nitrogen doped graphite at B = 0T

Landau levels of bilayer graphene appear at FLAT area !

Why LL-like peaks appear in STS at B = 0 T

Gradient of on-site potentials around graphitic nitrogen

DFT calculation of nitrogen dope bilayer graphene

On-site potential of carbon next to nitrogen is 1.5 eV lower than carbon far from nitrogen! There is a gradient of onsite potentials

Summary

- Landau level peaks of bilayer graphene are observed in STS at the atomically flat area of nitrogen doped HOPG at B = 0 T.
- Domain model can explain the LL appearance. (difference in the on-site potential)

Strain

K-intercalated

Science, 329, 544 (2010)

Nanobubble on Pt

Our work Scientific Reports 5, 16412 (2015)

N doped-graphite