Current Results from Reactor Neutrino Experiments

Soo-Bong Kim (KNRC, Seoul National University) "Tsukuba Global Science Week (TGSW2015), Tsukuba, Sep. 28-30, 2015"

Neutrino Physics with Reactor

2003 Observation of reactor neutrino oscillation ($\theta_{12} \& \Delta m_{21}^2$)

2012 Measurement of the smallest mixing angle θ_{13}

Reactor Neutrinos

Reactor θ_{13} Experiments

θ_{13} Reactor Neutrino Detectors

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

(11 institutions and 40 physicists)

- Chonbuk National University
- Chonnam National University
- Chung-Ang University
- Dongshin University
- GIST
- Gyeongsang National University
- Kyungpook National University
- Sejong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

RENO Status

Detection of Reactor Antineutrinos

New RENO Results

- ~800 days of data
- New measured-value of θ_{13} from rate-only analysis
- Observation of energy dependent disappearance of reactor neutrinos to measure Δm_{ee}^2 and θ_{13} (work in progress)

Observation of an excess at 5 MeV in reactor neutrino spectrum

Improvements after Neutrino 2014

- Relax Q_{max}/Q_{tot} cut : 0.03 \rightarrow 0.07

- allow more accidentals to increase acceptance of signal and minimize any bias to the spectral shape

More precisely observed spectra of Li/He background

- reduced the Li/He background uncertainty based on an increased control sample

More accurate energy calibration

- best efforts on understanding of non-linear energy response and energy scale uncertainty
- Elaborate study of systematic uncertainties on a spectral fitter
 - estimated systematic errors based on a detailed study of spectral fitter in the measurement of $\Delta m_{ee}{}^2$

Neutron Capture by Gd

Measured Spectra of IBD Prompt Signal

of background = 26,375(5.6%) # of background = 6,292(12.0%)

Observed Daily Averaged IBD Rate

Good agreement with observed rate and prediction.

Accurate measurement of thermal power by reactor neutrinos

Observed vs. Expected IBD Rates

- Indication of correct background subtraction

New θ_{13} Measurement by Rate-only Analysis

(Preliminary)

$$\sin^2 2\theta_{13} = 0.087 \pm 0.008(\text{stat.}) \pm 0.008(\text{syst.})$$

Uncertainties sources	Uncertainties (%)	Errors of $sin^2 2\theta_{13}$ (fraction)
Statistics (near) (far)	0.21 % 0.54 %	0.0080
Systematics (near) (far)	0.94% 1.06%	0.0081
Reactor	0.9 %	0.0032 (39.5 %)
Detection efficiency	0.2 %	0.0037 (45.7%)
Backgrounds (near) (far)	0.14 % 0.51 %	0.0070 (86.4 %)

Observation of an excess at 5 MeV

Correlation of 5 MeV Excess with Reactor Power

** Recent ab initio calculation [D. Dwyer and T.J. Langford, PRL 114, 012502 (2015)]:

 The excess may be explained by addition of eight isotopes, such as ⁹⁶Y and ⁹²Rb

The 5 MeV Excess Seen at Double-Chooz and Daya Bay

Daya Bay, ICHEP 2014

Why n-H IBD Analysis?

Motivation:

1. Independent measurement of θ_{13} value.

2. Consistency and systematic check on reactor neutrinos.

* RENO's low accidental background makes it possible to perform n-H analysis.

-- low radio-activity PMT

-- successful purification of LS and detector materials.

IBD Sample with n-H

preliminarv

	n-H IBD Event Vertex Distribution	1			
2		90		Near	Far
2 1.5	v-catcher	80 70	Live time(day)	379.663	384.473
1	target	60	IBD Candidate	249,799	54,277
0 <u>[</u>]		50	IBD(/day)	619.916	67.823
-0.5 -1		30	Accidental (/day)	25.16±0.42	68.90±0.35
-1.5		20	Fast Neutron(/day)	5.62±0.30	1.30±0.08
-2			LiHe(/day)	9.87±1.48	3.19±0.37
	$\rho^{2}[m^{2}]$				

Results from n-H IBD sample

Very preliminary Rate-only result (B data set, ~400 days)

 $\sin^2 2\theta_{13} = 0.103 \pm 0.014 (\text{stat.}) \pm 0.014 (\text{syst.})$

(Neutrino 2014) $\sin^2 2\theta_{13} = 0.095 \pm 0.015 (\text{stat.}) \pm 0.025 (\text{syst.})$

Removed a soft neutron background
 and reduced the uncertainty of the accidental background

preliminary

preliminary

Reactor Neutrino Oscillations

Energy Calibration from γ**-ray Sources**

B12 Energy Spectrum (Near & Far)

Energy Scale Difference between Near & Far

Energy scale difference < 0.15%

Far/Near Shape Analysis for Δm_{ee}^2

Results from Spectral Fit

Systematic Errors of θ_{13} & Δm_{ee}^2

(work in progress)

$\sin^2 2$	$\theta_{13} =$	$0.088 \pm$	0.008(stat) ±	= 0.007(syst)		(± 11
------------	-----------------	-------------	---------------	---------------	--	-------

 $\Delta m_{ee}^{2} = [2.52 \pm 0.19(\text{stat}) \pm 0.17(\text{syst})] \times 10^{-3} \text{ eV}^{2}$

(± 10 %)

%)

Uncertainties sources	Uncertainties (%)	Errors of $sin^2 2\theta_{13}$	Errors of ∆m _{ee} ² (x 10 ⁻³ eV ²)
Statistics (near) (far)	0.21 % 0.54 %	0.008	0.19
Total Systematics	0.94 % 1.06 %	0.007	0.17
Reactor	0.9 %	0.0025 (34.2 %)	-
Detection efficiency	0.2 %	0.0025 (34.2 %)	-
Energy scale diff.	0.15 %*	0.0015 (15.6 %)	0.07
Backgrounds (near) (far)	0.14 % 0.51 %	0.0060 (82.2 %)	0.15

(* tentative)

Observed L/E Dependent Oscillation

(work in progress)

Double Chooz Results

- 2011.4 2013.1 (460 days) : No near site detector until 2014.11
- Spectral analysis for n-Gd & n-H samples
- Reactor-off data for direct measurement of backgrounds

• $R+S: \sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029}$

Daya Bay Results

- 2011.12 2013.11 (621 days)
- Rate+Spectral analysis for n-Gd sample
- Rate analysis for n-H sample

Future Prospects on θ_{13} & Δm_{ee}^2

- Precision dominated by statistics
- Continued efforts on improving systematics
- Expected ultimate precision :

RENO

Daya Bay $\pm 0.003 (\pm 3\%) \pm 0.07 (\pm 3\%)$ $\pm 0.005 (\pm 5\%) \pm 0.1 (\pm 4\%)$ Double Chooz $\pm 0.010 (\pm 10\%)$

Experiments $\delta(\sin^2 2\theta_{13}) = \delta(\Delta m_{ee}) [\times 10^{-3} \text{ eV}^2]$

θ_{13} from Reactor and Accelerator Experiments

Summary

- Observed an excess at 5 MeV in reactor neutrino spectrum
- New measurement of θ_{13} by rate-only analysis

 $\sin^2 2\theta_{13} = 0.087 \pm 0.008(\text{stat}) \pm 0.008(\text{syst})$

- Observation of energy dependent disappearance of reactor neutrinos and our first measurement of Δm_{ee}^2

 $\sin^2 2\theta_{13} = 0.088 \pm 0.008(\text{stat}) \pm 0.007(\text{syst})$

 $\Delta m_{ee}^{2} = [2.52 \pm 0.19(\text{stat}) \pm 0.17(\text{syst})] \times 10^{-3} \text{ eV}^{2}$

(work in progress)

(preliminary)

• Measurement of θ_{13} from on n-H IBD analysis

 $\sin^2 2\theta_{13} = 0.103 \pm 0.014(\text{stat}) \pm 0.014(\text{syst})$ (preliminary)

• $sin(2\theta_{13})$ to 5% accuracy Δm_{ee}^2 to $0.1 \times 10^{-3} \text{ eV}^2$ (4%) accuracy within 3 years

Overview of RENO-50

 RENO-50 : An underground detector consisting of 18 kton ultralow-radioactivity liquid scintillator & 15,000 20" PMTs, at 50 km away from the Hanbit(Yonggwang) nuclear power plant

• **Goals** : - Determination of neutrino mass ordering - High-precision measurement of θ_{12} , Δm_{21}^2 and Δm_{ee}^2 - Study neutrinos from reactors, the Sun, the Earth, Supernova, and any possible stellar objects

 Budget : \$ 100M for 6 year construction (Civil engineering: \$ 15M, Detector: \$ 85M)

 Schedule : 2015 ~ 2020 : Facility and detector construction 2021 ~ : Operation and experiment

Determination of Neutrino Mass Hierarchy

- Reactor experiments: JUNO and RENO-50
 - Subdominant oscillation pattern of Δm_{31}^2
 - Large liquid scintillator detector with a baseline of ~50 km
 - Extraordinary energy resolution (<3% at 1 MeV)
- Long baseline beam experiments: T2K, NOvA, T2HK and LBNE
 - Matter effects of neutrino oscillation
 - Small value of $|\Delta m_{32}^2|/E$ & long baseline L
- Atmospheric neutrino experiments with Mton scale : HK, LBNE, MEMPHIS, PINGU and INO
 - Matter effects of neutrino oscillation
 - Small value of $|\Delta m_{32}^2|/E$ & long baseline L

Reactor Neutrino Oscillations at 50 km

Neutrino mass hierarchy (sign of Δm_{31}^2)+precise values of θ_{12} , $\Delta m_{21}^2 \& \Delta m_{ee}^2$

Various Physics with RENO-50

- Precise (<1%) measurement of θ_{12} , Δm_{21}^2 and Δm_{ee}^2
 - Provide an interesting test for unitarity
 - Essential for the future discoveries
- Neutrino burst from a Supernova in our Galaxy
 - ~5,600 events (@8 kpc) (* NC tag from 15 MeV deexcitation γ)
 - Study the core collapsing mechanism with neutrino cooling
- Geo-neutrinos : ~ 1,000 geo-neutrinos for 5 years

- Study the heat generation mechanism inside the Earth

- Solar neutrinos : with ultra low radioacitivity
 - MSW effect on neutrino oscillation
 - Probe the center of the Sun to study the metallicity problem
- Detection of J-PARC beam : ~200 events/year

J-PARC neutrino beam

Thanks for your attention!

Experimental site

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

