Results from Reactor Neutrino Experiments

Soo-Bong Kim (KNRC, Seoul National University) "Tsukuba Global Science Week (TGSW2017), Tsukuba, Sep. 25-27, 2017"

Neutirno Oscillation

Бруно Понтекоры

Bruno Pontecorvo (1913 - 1993)

 1946: Proposal of neutrino detection using ³⁷Cl
1957: Proposal of neutrino transformation (neutrino ↔ antineutrino)
1967/69: Proposal of neutrino flavor oscillation

Neutrino oscillation

"Established three-flavor mixing framework"

Impact of θ_{13} Measurement

- Definitive measurement of the last, smallest neutrino mixing angle θ_{13} based on the disappearance of reactor electron antineutrinos

For example, Hyper-Kamiokande(+ KNO), DUNE, JUNO, PINGU, INO,

Neutrino Physics with Reactor

1956 Discovery of (anti)neutrino

2003 Observation of reactor neutrino oscillation ($\theta_{12} \& \Delta m_{21}^2$) Inner Detector Outer Detector 0 0 0 0 Liquid Water Scintilalto Plastic Balloon Mineral PMT **KamLAND**

2012 Measurement of the smallest mixing angle θ_{13}

Reactor Neutrinos

Reactor θ_{13} Experiments

RENO at Yonggwang, Korea

θ_{13} Reactor Neutrino Detectors

Comparisons of Reactor θ_{13} Experiments

First θ_{13} measurements in 2012

~ 5 years ago

	Double Chooz	Daya Bay	RENO		
Publication	PRL 108, 131801 (Mar. 30, 2012)	PRL 108, 171803 (Apr.27, 2012)	PRL 108, 191802 (May 11, 2012)		
sin²(2θ ₁₃)	0.086	0.092	0.113		
Stat. error	0.041 (101 days)	0.016 (49 days)	0.013 (220 days)		
Syst. error	0.030 (flux uncert.)	0.005 (MC driven)	0.019 (data driven)		
Significance	1.7 σ	5.2 σ	4.9 σ		
1 month 2 weeks					

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

- (7 institutions and 40 physicists)
- Chonnam National University
- Dongshin University
- GIST
- Kyungpook National University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

The RENO Detector

Detection of Reactor Antineutrinos

Prompt signal (e⁺) : 1 MeV 2γ's + e⁺ kinetic energy (E = 1~10 MeV)

Delayed signal (n): 8 MeV γ's from neutron's capture by Gd or H
~30 μs or ~200 μs

Coincidence of prompt and delayed signals

Backgrounds

- Accidental coincidence between prompt and delayed signals
- Fast neutrons produced by muons, from surrounding rocks and inside detector (n scattering : prompt, n capture : delayed)
- ⁹Li/⁸He β-n followers produced by cosmic muon spallation

New Results from RENO

• Observation of energy dependent disappearance of reactor neutrinos to measure Δm_{ee}^2 and θ_{13} using ~1500 days of data (Aug. 2011 ~ Sep. 2015)

Measurement of absolute reactor neutrino flux using 1500 days

 Observation of an excess at ~5 MeV in reactor neutrino spectrum using ~1500 days of data

RENO Data-taking Status

Delayed Signals from Neutron Capture by Gd

Identical Performance of Near and Far Detectors

Reduction of background rates & uncertainties

Allows precise measurements of $sin^2 2\theta_{13}$ and Δm_{ee}^2

- Accidentals : Additional cuts and improved flashing-PMT removal algorithms
- Cosmogenic ⁹*Li*/⁸*He* : Optimized muon veto criteria

²⁵²Cf contamination : Improved multiple-neutron removal algorithms

Measured Spectra of IBD Prompt Signal

Correlation of 5 MeV Excess with Reactor Power

Correlation of 5 MeV excess with ²³⁵U isotope fraction

²³⁵U fraction corresponds to freshness of reactor fuel

Measurement of Absolute Reactor Neutrino Flux

R (data/prediction) = 0.946 ± 0.021 (1500 days)

- The flux prediction is with Huber + Mueller model
- Flux weighted baseline at near : 411 m

Deficit of observed reactor neutrino fluxes relative to the prediction (Huber + Mueller model) indicates an overestimated flux or possible oscillation to sterile neutrinos

Far/Near Shape Analysis

Allowed regions in $|\Delta m_{ee}^2|$ and $\sin^2 2\theta_{13}$

Observed L/E Dependent Oscillation

29

Summary of θ_{13} Results

Summary of θ_{13} results from reactors compared to accelerator experiments

ICHEP 2016 Giorgio Gratta

Non-accelerator neutrino physics

More precise measurement of θ_{13} and $|\Delta m_{ee}^2|$

PRL 116, 211801 (2016), Submi	tted to PRD (a	rXiv:1610.04326)
-------------------	--------------	----------------	------------------

500 days	Mean	Stat.	Sys.	Precision
$sin^2 2\theta_{13}$	0.082	+0.009 -0.009	+0.006 -0.006	12 %
 ∆m_{ee}² (x10 ⁻³ eV²)	2.62	+0.21 -0.23	+0.12 -0.13	10 %

New results (preliminary)

1500 days	Mean	Stat.	Sys.	Precision
$sin^2 2\theta_{13}$	0.086	+0.006 -0.006	+0.005 -0.005	9 %
∆m _{ee} ² (x10 ⁻³ eV²)	2.61	+0.15 -0.16	+0.09 -0.09	7 %

Systematic errors are reduced due to background reduction and larger statistics of control samples

RENO : Plan and Prospects

Plan for RENO data taking						
2017	2018	20	019	2020	2	021
RENO data will be more years from no take 3 additional ye analysis.	sible extension of additional 2~3 years According to our recent study, the systematic error of $ \Delta m_{ee}^2 $ is smaller					
$\sin^2 2\theta_{13}$ and $ \Delta m_{ee}^2 $ will approach to ~6% precision (our design goal).			than th	e statistica	al error.	
	500 days Measured		1500 c Measu (prelimi	lays ired nary)	~3000 days Expected	6
sin²2θ ₁₃	12 %		9 %	6	~ 5 %	
∆m _{ee} ²	10 %		7 %	6	4 ~ 5 %	

θ_{13} & $|\Delta m^2_{ee}|$ in Daya Bay

1230 days data

Neutrino 2016

Last publication: $\sin^2 2\theta_{13} = [8.4 \pm 0.5] \times 10^{-2}$ P. R. L. 115, 111802 (2015) $|\Delta m^2_{ee}| = [2.42 \pm 0.11] \times 10^{-3} eV^2$

33

θ₁₃: Double Chooz

JHEP 10 (2014) 086

Future Prospects on θ_{13}

	Double Chooz	RENO	Daya Bay
Data	3 yrs Near&Far	5 yrs	6 yrs
$\Delta(\sin^2(2\theta_{13}))$	~10 %	~5 %	~3 %
$\Delta(m^2_{ee})$	-	~5 %	~3 %

35

Summary

• More precise measurements of θ_{13} and Δm_{ee}^2 using energy dependent disappearance of reactor neutrinos

 $\sin^2 2\theta_{13} = 0.086 \pm 0.006(\text{stat}) \pm 0.005(\text{syst}) \pm 0.008$ 9 % precision

 ± 0.18

7 % precision

Measured absolute reactor neutrino flux : R= 0.946±0.021

 $\left|\Delta m_{ee}^{2}\right| = 2.61_{-0.16}^{+0.15} (\text{stat.})_{-0.09}^{+0.09} (\text{syst.}) (\times 10^{-3} \text{eV}^{2})$

- Observed an excess at 5 MeV in reactor neutrino spectrum
- $sin^2(2\theta_{13})$ and Δm_{ee}^2 to 6% accuracy after 2 more years data taking
- Additional 2~3 years of data taking under consideration to improve Δm_{ee}^2 accuracy

Thanks for your attention!

Reactor Neutrino Oscillations

Energy Calibration from γ-ray Sources

- Non-linear resonse of the scintillation energy is calibrated using γ-ray sources.
- The visible energy from γ-ray is corrected to its corresponding positron energy.

