

Mapping the Milky Way in Sub-millimeter Wavelengths Emission Lines

Masumichi Seta (KwanseiGakuin Univ.)

Contents

- Molecular cloud
- Survey observations of the Milky Way
- Emission lines in sub-mm wavelengths
- Astronomy from Antarctica

Molecular cloud (MC)

Probe for Observing Molecular Cloud

- No emission from main constituent H_2 Thermal emission from dust grains Emission lines of molecule and atom
- What is good probe? Abundance

[He]/[H]~ 0.1 $[O]/[H] \sim 5 \times 10^{-4}$ $[C]/[H] \sim 3 \times 10^{-4}$ UV cosmic ray change state Ionization of $H_2 > 13.6 \text{ eV}$ Ionization of C > 11.3eV

Dissociation of H2 >14.7 eV Dissociation of CO >11.1eV

Critical density n optical depth

CO J=1-0 n~1 × 10³/cc CO J=4-3 n~4 × 10^4 /cc

Cosmic Ray TV CO has been used. Atomic carbon may be good probe.

Molecular cloud

Gas (molecule, atom)

Dust Grain

History of Mapping the Milky Way

Velocity of Molecular Cloud

VELOCITY

Molecular Cloud around Sun

High Resolution Galactic Plane Survey

FOREST Unbiased Galactic plane Imaging survey with Nobeyama 45m telescope(FUGIN (Umemoto+ Publ 17

Advances in the Survey Obs.

- Higher angular resolution NRO 45m FUGIN Nagoya Univ. NANTEN2 4m
- Higher frequency Univ. Tokyo-NRO 60cm CO 2-1 9 Osaka Prefect. Univ. 1.8m 3' ¹²CO ¹³CO C¹⁸O 2-1 Univ. of Tsukuba 30cm 9' CO 4-3 CI 9' Intensity ratio (I 4-3/1-0) \rightarrow physical condition Mt. Fuji 1.2m CO 4-3 JCMT 15m CO 3-2 (Dempsey+ ApJS 2013)

Tsukuba 30cm in Chile

Galactic longitude (deg)

Filamental structure of Dust

∼0.1pc width

70-500um

Emission Lines from Atom and Molecule

Change in internal energy

Energy States of molecule

$$E = E_{electron} + E_{vibration} + E_{rotation}$$

Rotational transition of CO

CO J=1-0 115GHz CO J=4-3 460GHz Fine structure line of atomic carbon (CI)

Interaction between angular momentum of electron and spin

 ${}^{3}P_{2} - {}^{3}P_{1}$ 809.34GHz (370um) ${}^{3}P_{1} - {}^{3}P_{0}$ 492.16GHz (609um)

Galactic longitude (degrees)

Atomic carbon (CI) is detected at PDR

10-4

н

H2*

Photo Dissociation Region (PDR) Simulation

C I Peak behind CO

Sub-mm Observation is difficult

- No detector
 - →THz detector is availab Camera MKIDS TES Heterodyne SIS, HEB
- Absorption by atmosphere (Water vapor & Oxygen)
 ↓
 High Altitude ,Dry site

Maunakea (Hawaii)

High Plateau in Antarctica

Best site for sub-mm Astronomy

- High altitude (3000m以上)
- Low temp. (Min-80°C, Av-55°C)

2016年1月~2月

(国立極地研究所の紹介)

10m望遠鏡

建設候補地

Summary

- Molecular cloud is important
 - Energy source of Active Galactic Nuclei
 - Stars are born in Molecular cloud
- CI at 492 GHz & 809 GHz may be good probe for revealing formation and evolution of molecular cloud.
- Sub-mm Astronomy is difficult due to strong absorption of atmospheric water vapor.
- Antarctic plateau is best site on earth for Sub-mm Astronomy.
- We have plan to build 10m class telescope in Antarctica