Global polarization in heavy ion collisions

Global polarization in heavy ion collisions

Sergei A. Voloshin
WAYNE STATE
UNVERSITY
nature
the international weekly journal of science

Outline ("Towards the systematic study of vorticity in HIC"):

+ Vorticity and global polarization
+ Global polarization / spin alignment - how to measure
+ Experimental results. Older and newer.
+ "Local" vorticity field:
- phi, pt dependence...
- (vorticity)z and anisotropic flow
+ Global polarization and chiral anomalous effects

Global polarization

[nucl-th/0410079] Globally Polarized Quark-gluon Plasma in Non-central A+A Collisions
Authors: Zuo-Tang Liang (Shandong U), Xin-Nian Wang (LBNL)
(Submitted on 18 Oct 2004 (v1), last revised 7 Dec 2005 (this version, v5))

Predicted polarization of the order of a few tens of percent!

[nucl-th/0410089] Polarized secondary particles in unpolarized high energy hadron-hadro...
Authors: Sergei A. Voloshin
(Submitted on 21 Oct 2004)

Global polarization

[nucl-th/0410079] Globally Polarized Quark-gluon Plasma in Non-central A+A Collisions
Authors: Zuo-Tang Liang (Shandong U), Xin-Nian Wang (LBNL)
(Submitted on 18 Oct 2004 (v1), last revised 7 Dec 2005 (this version, v5))

Predicted polarization of the order of a few tens of percent!

[nucl-th/0410089] Polarized secondary particles in unpolarized high energy hadron-hadro...
Authors: Sergei A. Voloshin
(Submitted on 21 Oct 2004)

Guess: $\Delta v \sim 0.2, \quad \Delta x \sim 5 \mathrm{fm} \Rightarrow$
$\omega / T \sim$ up to a few percent

Global polarization

[nucl-th/0410079] Globally Polarized Quark-gluon Plasma in Non-central A+A Collisions
Authors: Zuo-Tang Liang (Shandong U), Xin-Nian Wang (LBNL)
(Submitted on 18 Oct 2004 (v1), last revised 7 Dec 2005 (this version, v5))

Predicted polarization of the order of a few tens of percent!

[nucl-th/0410089] Polarized secondary particles in unpolarized high energy hadron-hadro...
Authors: Sergei A. Voloshin
(Submitted on 21 Oct 2004)

$$
\text { Guess: } \Delta v \sim 0.2, \Delta x \sim 5 \mathrm{fm} \Rightarrow \quad \omega / T \sim \text { up to a few percent }
$$

Nonrelativistic statistical mechanics (NSM)

$$
p\left(T, \mu_{i}, \mathbf{B}, \boldsymbol{\omega}\right) \propto \exp \left[\left(-E+\mu_{i} Q_{i}+\boldsymbol{\mu} \cdot \mathbf{B}+\boldsymbol{\omega} \cdot(\mathbf{S}+\mathbf{L})\right) / T\right]
$$

$$
\mathbf{S} \approx \frac{S(S+1)}{3} \frac{\boldsymbol{\omega}}{T}
$$

Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down
[28] L. D. Landau and E. M. Lifshits, Statistical Physics, 2nd Ed., Pergamon Press, 1969.

[^0] PHYSICAL REVIEW C 95, 054902 (2017)
[29] A. Vilenkin, "Quantum Field Theory At Finite Temperature In A Rotating System," Phys. Rev. D 21, 2260 (1980). doi:10.1103/PhysRevD.21.2260
nature physics

Spin hydrodynamic generation

R. Takahashi ${ }^{1,2,3,4 \star}$, M. Matsuo ${ }^{2,4}$, M. Ono ${ }^{2,4}$, K. Harii ${ }^{2,4}$, H. Chudo ${ }^{2,4}$, S. Okayasu ${ }^{2,4}$, J. leda ${ }^{2,4}$,
S. Takahashi ${ }^{1,4}$, S. Maekawa ${ }^{2,4}$ and E. Saitoh ${ }^{1,2,3,4 \star}$

The most direct analogy to the HI case.

Global polarization: how it is measured

Know the direction of the angular momentum.
On average, spectators deflect "outwards"!
S. A. Voloshin and T. Niida, Ultrarelativistic nuclear collisions: Direction of spectator flow Phys. Rev. C 94, 021901 (R) (2016).

Weak, parity violating decay - "golden channel"

$$
-1<P=\left\langle s_{y}\right\rangle / s<1
$$

$$
\Lambda \rightarrow p+\pi^{-}
$$

$$
\frac{d N}{d \cos \theta^{*}} \propto 1+\alpha_{H} P_{H} \cos \theta^{*}
$$

$$
\alpha_{\Lambda}=-\alpha_{\bar{\Lambda}} \approx 0.624
$$

Global polarization: how it is measured

Know the direction of the angular momentum.
On average, spectators deflect "outwards"!
S. A. Voloshin and T. Niida, Ultrarelativistic nuclear collisions: Direction of spectator flow Phys. Rev. C 94, 021901 (R) (2016).

Weak, parity violating decay - "golden channel"

$$
-1<P=\left\langle s_{y}\right\rangle / s<1
$$

$$
\Lambda \rightarrow p+\pi^{-}
$$

$$
\frac{d N}{d \cos \theta^{*}} \propto 1+\alpha_{H} P_{H} \cos \theta^{*}
$$

$$
\alpha_{\Lambda}=-\alpha_{\bar{\Lambda}} \approx 0.624
$$

Global polarization: how it is measured

Know the direction of the angular momentum.
On average, spectators deflect "outwards"!
S. A. Voloshin and T. Niida, Ultrarelativistic nuclear collisions: Direction of spectator flow Phys. Rev. C 94, 021901 (R) (2016).

Weak, parity violating decay - "golden channel"

$$
-1<P=\left\langle s_{y}\right\rangle / s<1
$$

$$
\Lambda \rightarrow p+\pi^{-}
$$

$$
\frac{d N}{d \cos \theta^{*}} \propto 1+\alpha_{H} P_{H} \cos \theta^{*}
$$

$$
\alpha_{\Lambda}=-\alpha_{\bar{\Lambda}} \approx 0.624
$$

Strong decays of $s>1 / 2$ particles, e.g. vector mesons

$$
\begin{array}{|l|}
\hline K^{* 0} \rightarrow \pi+K \\
\hline \hline \phi \rightarrow K^{-}+K^{+} \\
\hline
\end{array}
$$

$$
\frac{d N}{d \cos \theta^{*}} \propto\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}
$$

$$
\frac{d N}{d \cos \theta^{*}} \propto w_{0}\left|Y_{1,0}\right|^{2}+w_{+1}\left|Y_{1,1}\right|^{2}+w_{-1}\left|Y_{1,-1}\right|^{2} \propto w_{0} \cos ^{2} \theta^{*}+\left(w_{+1}+w_{-1}\right) \sin ^{2} \theta^{*} / 2
$$

Global polarization: how it is measured

Know the direction of the angular momentum.
On average, spectators deflect "outwards"!
S. A. Voloshin and T. Niida, Ultrarelativistic nuclear collisions: Direction of spectator flow Phys. Rev. C 94, 021901 (R) (2016).

Weak, parity violating decay - "golden channel"

$$
-1<P=\left\langle s_{y}\right\rangle / s<1
$$

$$
\Lambda \rightarrow p+\pi^{-}
$$

$$
\frac{d N}{d \cos \theta^{*}} \propto 1+\alpha_{H} P_{H} \cos \theta^{*}
$$

$$
\alpha_{\Lambda}=-\alpha_{\bar{\Lambda}} \approx 0.624
$$

Strong decays of $s>1 / 2$ particles, e.g. vector mesons

$K^{* 0} \rightarrow \pi+K$
$\phi \rightarrow K^{-}+K^{+}$
$\frac{d N}{d \cos \theta^{*}} \propto\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*} \quad$ NSM: $\rho_{00} \approx \frac{1}{3+(\omega / T)^{2}}$

$$
\frac{d N}{d \cos \theta^{*}} \propto w_{0}\left|Y_{1,0}\right|^{2}+w_{+1}\left|Y_{1,1}\right|^{2}+w_{-1}\left|Y_{1,-1}\right|^{2} \propto w_{0} \cos ^{2} \theta^{*}+\left(w_{+1}+w_{-1}\right) \sin ^{2} \theta^{*} / 2
$$

The Λ and $\bar{\Lambda}$ hyperon global polarization has been measured in $\mathrm{Au}+\mathrm{Au}$ collisions at center-of-mass energies $\sqrt{s_{N N}}=62.4$ and 200 GeV with the STAR detector at RHIC. An upper limit of $\left|P_{\Lambda, \bar{\Lambda}}\right| \leqslant 0.02$ for the global polarization of Λ and $\bar{\Lambda}$ hyperons within the STAR detector acceptance is obtained. This upper limit is far below the few tens of percent values discussed in Ref. [1], but it falls within the predicted region from the more realistic calculations [4] based on the HTL model.

FIG. 2: (color online) The spin density matrix elements ρ_{00} with respect to the reaction plane in mid-central $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$ versus p_{T} of the vector meson. The sizes of the statistical uncertainties are indicated by error bars, and the systematic uncertainties by caps. The $K^{* 0}$ data points have been shifted slightly in p_{T} for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1 / 3$. The bands and continuous horizontal lines show predictions discussed in the text.
B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 77, 061902 (2008) doi:10.1103/PhysRevC.77.061902 [arXiv:0801.1729 [nucl-ex]].

Spin alignment, 2017

$$
\mathrm{NSM}: \rho_{00} \approx \frac{1}{3+(\omega / T)^{2}}
$$

$$
\begin{aligned}
\rho_{00}^{\rho(\mathrm{rec})} & =\frac{1-P_{q}^{2}}{3+P_{q}^{2}} \\
\rho_{00}^{V(\mathrm{frag})} & =\frac{1+\beta P_{q}^{2}}{3-\beta P_{q}^{2}}
\end{aligned}
$$

[^1]
Global polarization, 2017

To extract primary hyperon polarization one needs to correct for feed-down (most important are decays $\quad \Sigma^{*}(1385) \rightarrow \Lambda \pi, \quad \Sigma^{0} \rightarrow \Lambda \gamma$ and $\Xi \rightarrow \Lambda \pi$ (taking into account the difference in the magnetic moments).
This correction is about 5-15\%

Global polarization, 2017

To extract primary hyperon polarization one needs to correct for feed-down (most important are decays $\quad \Sigma^{*}(1385) \rightarrow \Lambda \pi, \quad \Sigma^{0} \rightarrow \Lambda \gamma$ and $\Xi \rightarrow \Lambda \pi$ (taking into account the difference in the magnetic moments).
This correction is about 5-15\%

Hyperon polarization measurements: p_{T} dependence

p_{T} integrated results

```
5-15%
```

15-50\%

$$
\begin{array}{|l|}
\hline P_{\wedge}(\%)=-0.01 \pm 0.13 \text { (stat) } \pm 0.04 \text { (syst) } \\
P_{\bar{\Lambda}}(\%)=-0.09 \pm 0.13 \text { (stat) } \pm 0.08 \text { (syst) } \\
\hline \hline P_{\wedge}(\%)=-0.08 \pm 0.10 \text { (stat) } \pm 0.04 \text { (syst) } \\
P_{\bar{\Lambda}}(\%)=0.05 \pm 0.10 \text { (stat) } \pm 0.03 \text { (syst) } \\
\hline
\end{array}
$$

Feed down
corrections underway (model dependent) ~ 1.7 +/- 0.5

Vorticity, magnetic field

Polarization of anti-Lambdas is higher than that of Lambdas - indication of the magnetic field effect?

Vorticity, magnetic field

Polarization of anti-Lambdas is higher than that of Lambdas - indication of the magnetic field effect?

\rightarrow Omega/T of the order of a few percent
\rightarrow Magnetic fields $\quad e B \sim 10^{-2} m_{\pi}^{2}$

EM field lifetime. Quark density evolution

L. McLerran, V. Skokov / Nuclear Physics A 929 (2014) 184-190

Fig. 1. Magnetic field for static medium with Ohmic conductivity, σ_{Ohm}.

PRL 118, 012301 (2017)
PHYSICAL REVIEW LETTERS

Charge-Dependent Directed Flow in $\mathbf{C u}+$ Au Collisions at $\sqrt{s_{N N}}=200 \mathbf{G e V}$
(STAR Collaboration)

At the time of the strong EM fields ($\sim 0.25 \mathrm{fm}$) only about 10% of all charges are produced

Energy dependence. Comparison to hydro

Vorticity and directed flow

Fig. 6 Directed flow of pions for different values of η_{m} parameter with $\eta / s=0.1$ compared with STAR data [22]

Good description of directed flow requires accounting for vorticity!

Slope, $d v_{1} / d \eta$ proportional to vorticity?

$$
v_{1} \equiv \cos \left(\phi-\Psi_{\mathrm{RP}}\right)
$$

Vorticity and directed flow

Fig. 6 Directed flow of pions for different values of η_{m} parameter with $\eta / s=0.1$ compared with STAR data [22]

Good description of directed flow requires accounting for vorticity!

Slope, $\mathrm{dv}_{1} / \mathrm{d} \mathrm{\eta}$ proportional to vorticity?

$$
v_{1} \equiv \cos \left(\phi-\Psi_{\mathrm{RP}}\right)
$$

Slope at 2.76 TeV is approximately 3 times smaller than at 200 GeV

Energy dependence. Following v_{1} slope

Energy dependence. Following v_{1} slope

For a meaningful results at LHC energy we need about 100 larger statistics

Centrality dependence

Not enough statistics for a real conclusion. (might be slightly improved)

$$
\frac{1}{N} \frac{\mathrm{~d} N}{\mathrm{~d} \Omega^{*}}=\frac{1}{4 \pi}\left(1+2 \alpha \boldsymbol{\Pi}_{0} \cdot \hat{\mathbf{p}}^{*}\right)
$$

Erratum: Λ Polarization in Peripheral Heavy Ion Collisions F. Becattini, L.P. Csernai, D.J. Wang, Phys. Rev. C 88, 034905 (2013)
F. Becattini, L.P. Csernai, D.J. Wang, and Y.L. Xie

Vorticity vs hyperon momentum

No obvious increase of the polarization with transverse momentum.

Erratum: Λ Polarization in Peripheral Heavy Ion Collisions F. Becattini, L.P. Csernai, D.J. Wang, Phys. Rev. C 88, 034905 (2013)
F. Becattini, L.P. Csernai, D.J. Wang, and Y.L. Xie

Going into details: phi dependence

Going into details: phi dependence

Erratum: Λ Polarization in Peripheral Heavy Ion Collisions F. Becattini, L.P. Csernai, D.J. Wang, Phys. Rev. C 88, 034905 (2013)
(1) With initial flow

QM2017
Hui Li ${ }^{\text {a }}$, Hannah Petersen ${ }^{\text {b,c,d }}$, Long-Gang Pang*b,e,f , Qun Wang ${ }^{\text {a }}$, Xiao-Liang Xia ${ }^{\text {a }}$, Xin-Nian Wang ${ }^{\text {g,f }}$

Anomalous chiral effects

D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisionsâ̆̆̆ŤA status report, Prog. Part. Nucl. Phys. 88 (2016) 1-28,

$$
\mathbf{J}=(Q e) \frac{1}{2 \pi^{2}} \mu_{5}(Q e) \mathbf{B}
$$

$$
\mathbf{J}=\frac{1}{2 \pi^{2}} \mu_{5}(\mu \boldsymbol{\omega})
$$

$$
\boldsymbol{\omega}=\frac{1}{2} \nabla \times \mathbf{v}
$$

Chiral Separation Effect (CSE) - separation of the axial charge along the magnetic field

$$
\mathbf{J}_{\mathbf{5}}=\frac{1}{2 \pi^{2}} \mu(Q e) \mathbf{B}
$$

$$
\mathbf{J}_{\mathbf{5}}=\left(\frac{\mu^{2}+\mu_{5}^{2}}{4 \pi^{2}}+\frac{T^{2}}{12}\right) \boldsymbol{\omega}
$$

Can be:
net baryon number, electric charge, net strangeness

In common: chiral anomalous transport determined by the chiral (axial) quantum anomaly

CSE and global polarization

Chiral Separation Effect (CSE) - separation of the axial charge along the magnetic field

$$
\mathbf{J}_{\mathbf{5}}=\frac{1}{2 \pi^{2}} \mu(Q e) \mathbf{B}
$$

S. Schlichting and SV, in preparation

Can be:
net baryon number, electric charge, net strangeness

$$
\mu_{\mathrm{v}} / T \propto \frac{\left\langle N_{+}-N_{-}\right\rangle}{\left\langle N_{+}+N_{-}\right\rangle} \quad \text { or } \quad \mu_{\mathrm{v}} / T \propto \frac{\left\langle N_{K^{+}}-N_{K^{-}}\right\rangle}{\left\langle N_{K^{+}}+N_{K^{-}}\right\rangle}
$$

P_{\wedge} vs net charge, net strangeness

$$
\mu_{\mathrm{v}} / T \propto \frac{\left\langle N_{+}-N_{-}\right\rangle}{\left\langle N_{+}+N_{-}\right\rangle} \quad \text { or } \quad \mu_{\mathrm{v}} / T \propto \frac{\left\langle N_{K^{+}}-N_{K^{-}}\right\rangle}{\left\langle N_{K^{+}}+N_{K^{-}}\right\rangle}
$$

No clear trend within current uncertainties. Need more events...

Vorticity and/from elliptic flow

- Should be strongly "correlated" with elliptic flow
- Weak energy dependence (might even increase with energy)
- Measurements wrt Ψ_{2} - good RP resolution
- Might provide detailed information on velocity fields

Blast wave parameterization

$$
\begin{array}{r}
r_{\max }=R\left(1-a \cos \left(2 \phi_{s}\right)\right] \\
\phi_{s}-\phi_{b} \approx 2 a \sin \left(2 \phi_{s}\right)
\end{array}
$$

Number of emitting "sources":

$$
\propto\left[1+2 s_{2} \cos \left(2 \phi_{b}\right)\right] \quad s_{2} \approx a
$$

Transverse rapidity (boost):

$$
\rho_{\approx \rho_{t, \max }(r / R)\left[1+(a+b) \cos \left(2 \phi_{s}\right], ~\right.}^{\text {a }}
$$

$$
(\nabla \times \mathbf{v})_{z}=\frac{1}{r}\left(\frac{\partial\left(r v_{\phi}\right)}{\partial r}-\frac{\partial v_{r}}{\partial \phi}\right) \begin{aligned}
& v_{\phi} \approx-\rho_{\max }(r / R) 2 a \sin \left(2 \phi_{s}\right) \\
& v_{r} \approx \rho_{t}
\end{aligned}
$$

$$
\omega_{z} \approx\left(\rho_{t, \max } / R\right) \sin \left(n \phi_{s}\right)\left[b_{n}-a_{n}\right]
$$

$\mathrm{R} \approx 10 \mathrm{fm}, \mathrm{T} \approx 100 \mathrm{MeV}$

$$
P_{z}=\omega_{z} /(2 T) \approx 0.1 \sin \left(n \phi_{s}\right)\left[b_{n}-a_{n}\right]
$$

Blast wave parameterization

$$
\begin{array}{r}
r_{\max }=R\left(1-a \cos \left(2 \phi_{s}\right)\right] \\
\phi_{s}-\phi_{b} \approx 2 a \sin \left(2 \phi_{s}\right)
\end{array}
$$

Number of emitting "sources":

$$
\propto\left[1+2 s_{2} \cos \left(2 \phi_{b}\right)\right] \quad s_{2} \approx a
$$

Transverse rapidity (boost):
$\rho \approx \rho_{t, \max }\left[r / r_{\max }\left(\phi_{s}\right)\right]\left[1+b \cos \left(2 \phi_{s}\right]\right.$

$$
\rho_{\approx} \rho_{t, \max }(r / R)\left[1+(a+b) \cos \left(2 \phi_{s}\right]\right.
$$

$$
(\nabla \times \mathbf{v})_{z}=\frac{1}{r}\left(\frac{\partial\left(r v_{\phi}\right)}{\partial r}-\frac{\partial v_{r}}{\partial \phi}\right) \begin{aligned}
& v_{\phi} \approx-\rho_{\max }(r / R) 2 a \sin \left(2 \phi_{s}\right) \\
& v_{r} \approx \rho_{t}
\end{aligned}
$$

$$
\omega_{z} \approx\left(\rho_{t, \max } / R\right) \sin \left(n \phi_{s}\right)\left[b_{n}-a_{n}\right]
$$

$\mathrm{R} \approx 10 \mathrm{fm}, \mathrm{T} \approx 100 \mathrm{MeV}$

$$
P_{z}=\omega_{z} /(2 T) \approx 0.1 \sin \left(n \phi_{s}\right)\left[b_{n}-a_{n}\right]
$$

The effects should be present also at higher harmonics, e.g. for triangular flow.

Provides connection to $\mathrm{v}_{\mathrm{n}}\left(\mathrm{p}_{\mathrm{t}}\right)$ and azFemto measurements

Barnett and Einstein-de Haas effects

JULY 30, 1915]
SCIENCE
163
SPECIAL ARTICLES
MAGNETIZATION By ROTATION
Second Series.
October, IOI5
Vol. VI., No. 4

THE

PHYSICAL REVIEW.

MAGNETIZATION BY ROTATION. ${ }^{1}$

By S. J. Barnett
§I. In 1909 it occurred to me, while thinking about the origin of terrestrial magnetism, that a substance which is magnetic (and therefore, according to the ideas of Langevin and others, constituted of atomic
If we assume that e / m has the value ordinarily accepted for the negative electron in slow motion, viz., -1.77×10^{7}, and put $\Omega=2 \pi n$, where n is the angular velocity in revolutions per second, we obtain for the intensity per unit angular velocity

$$
\begin{equation*}
H / n=-7 . \mathrm{I} \times \mathrm{IO}^{-7} \frac{\text { gauss }}{\text { r.p.s. }} \tag{9}
\end{equation*}
$$

This is on the assumption that the negative electron alone is effective. According to this, all substances would be acted upon by precisely the same intensity for the same angular velocity.

> To obtain the intrinsic magnetic intensity per unit speed it is now necessary only to multiply half the mean differential deflection per unit speed, given in §29, by the intrinsic intensity per unit deflection, H_{0}, given in §I2. In this way we obtain
> $\frac{H}{n}=-\frac{1}{2} \times 0.050 \frac{\mathrm{~mm} .}{\text { r.p.s. }} \times 1.26 \times 10^{-5} \frac{\text { gauss }}{\mathrm{mm} .}=-3 . \mathrm{I}_{5} \times 1 \mathrm{o}^{-7} \frac{\text { gauss }}{\text { r.p.s. }}$ (I3)

Physics. - "Erperimental proof of the existence of Ampère's molecular currents." By Prof. A. Einstein and Dr. W. J. de Haas. (Communicated by Prof. H. A. Lorentz)',
(Communicated in the meeting of April 23, 1915).

Any change of the moment of momentum $\Sigma \Re$ of a magnetized budy gives rise to a couple 0 determined by the vector equation

$$
\begin{equation*}
\theta=-\Sigma \frac{d \mathfrak{M} \mathfrak{l}}{d t}=1,13 \cdot 10-7 \frac{d I}{d t} . \tag{5}
\end{equation*}
$$

where the numerical coefficient has been deduced from the known value of $\frac{e}{m}$ for negative electrons.

With these numbers equation (17) leads to the value

$$
\lambda=1,1 . \mathfrak{i} 0-7
$$

which agrees very well with the theoretical one $1,13.10^{-7}$.
We must observe, however, that we cannot assign to our measurements a greater precision than of 10%.

It seems to us that within these limits the theoretical conclusions have been fairly confirmed by our observations..

The experiments have been carried out in the "Physikalisch-Technische Reichsanstalt". We want to express our thanks for the apparatus kindly placed at our disposition.

To compare to Barnett's results, multiply by 2π

Barnett and Einstein-de Haas effects

THE

PHYSICAL REVIEW.

MAGNETIZATION BY ROTATION. ${ }^{1}$
Any change of the moment of momentum $\Sigma \Re$ of a magnetized body gives rise to a couple 0 bermined by the vector equation

$$
\begin{equation*}
\theta=-\Sigma \frac{d \mathfrak{M} \imath}{d t}=1,13.10-7 \frac{d I}{d t} . \tag{5}
\end{equation*}
$$

```
By S. J. Barnett
```

§I. In 1909 it occurred to me, while thinking about the origi of terrestrial magnetism, that a substance which is magnetic (and/herefore, according to the ideas of Langevin and others, constituted atomic
If we assume that e / m has the value ordinarily accepted foy the negative
With these numbers equation (17) leads to the value electron in slow motion, viz., - I. 77×10^{7}, and put Ω is the angular velocity in revolutions per second, we gtain for the

Second Series
October, 1915
Vol. VI., No. 4

This is on the assumption that the negati electron alone is effective According to this, all substances would be acted upon by precisely the

value of $\frac{e}{m}$ for negative electrons.
Expected
tensity per unit angular velocity
$H \mid n=$ same intensity for the same angular velocity.

Vorticity: an important piece in the picture of heavy ion collisions

- The global polarization measurements indicate thermal vorticity values of the order of a few percent at lower RHIC energy, strongly decreasing with collision energy
- Polarization seems to be stronger for particle emitted in-plane
- The split between lambda and lambda-bar polarization is likely due to the strong magnetic fields of the order of $e B \sim 10^{-2} m_{\pi}^{2}$
- Polarization seems to be stronger for particle emitted in-plane
- Elliptic (and higher harmonics) flow leads to a nontrivial azimuthal structure in polarization along the beam direction.

Very rich and extremely interesting physics! ... (StatMech of vortical fluids of nonzero spin particles, spin structure of hadrons, etc...) as well as very important ingredient for the interpretation of existing data (e.g. elliptic flow)

A lot more to come! (RHIC special Au+Au run at $27 \mathrm{GeV}, \ldots$. Measurements with cold atoms...)

EXTRA SLIDES

Asymmetric collisions: $\mathrm{Cu}+\mathrm{Au}$

Asymmetric collisions: $\mathrm{Cu}+\mathrm{Au}$

Role of μ_{B}

Ren-hong Fang, ${ }^{1}$ Long-gang Pang, ${ }^{2}$ Qun Wang, ${ }^{1}$ and Xin-nian Wang ${ }^{3,4}$ arXiv:1604.04036v1

Nonzero baryon potential is unlikely the reason for the difference in polarization of lambda and lambda-bar
F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Annals Phys. 338, 32 (2013), 1303.3431.

$$
\Pi_{\mu}(p)=\epsilon_{\mu \rho \sigma \tau} \frac{p^{\tau}}{8 m} \frac{\int \mathrm{~d} \Sigma_{\lambda} p^{\lambda} n_{F}\left(1-n_{F}\right) \partial^{\rho} \beta^{\sigma}}{\int \mathrm{d} \Sigma_{\lambda} p^{\lambda} n_{F}}
$$

$$
n_{F}=\frac{1}{\mathrm{e}^{\beta(x) \cdot p-\mu / T}+1} .
$$

Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down

Francesco Becattini, ${ }^{1}$ Iurii Karpenko, ${ }^{2}$ Michael Annan Lisa, ${ }^{3}$ Isaac Upsal, ${ }^{3}$ and Sergei A. Voloshin ${ }^{4}$ arXiv:1610.02506v1 [nucl-th] 8 Oct 2016

Nonrelativistic statistical mechanics

$$
p\left(T, \mu_{i}, \mathbf{B}, \boldsymbol{\omega}\right) \propto \exp \left[\left(-E+\mu_{i} Q_{i}+\boldsymbol{\mu} \cdot \mathbf{B}+\boldsymbol{\omega} \cdot \mathbf{J}\right) / T\right]
$$

Decay	C
parity-conserving: $1 / 2^{+} \rightarrow^{1 / 2+} 0^{-}$	$-1 / 3$
parity-conserving: $1 / 2^{-} \rightarrow^{1} / 2^{+}$	0^{-}
parity-conserving: $3 / 2^{+} \rightarrow^{1 / 2^{+}} 0^{-}$	$1 / 3$
parity-conserving: $3 / 2^{-} \rightarrow^{1} / 2^{+}$	0^{-}
$\Xi^{0} \rightarrow \Lambda+\pi^{0}$	$-1 / 5$
$\Xi^{-} \rightarrow \Lambda+\pi^{-}$	+0.900
$\Sigma^{0} \rightarrow \Lambda+\gamma$	$-1 / 3$

$$
\mathbf{S} \approx \frac{S(S+1)}{3} \frac{\boldsymbol{\omega}}{T}
$$

TABLE I. Polarization transfer factors C (see eq. (36)) for important decays $X \rightarrow \Lambda(\Sigma) \pi$

Global hyperon polarization at local thermodynamic equilibrium with vorticity,

 magnetic field and feed-downFrancesco Becattini, ${ }^{1}$ Iurii Karpenko, ${ }^{2}$ Michael Annan Lisa, ${ }^{3}$ Isaac Upsal, ${ }^{3}$ and Sergei A. Voloshin ${ }^{4}$ arXiv:1610.02506v1 [nucl-th] 8 Oct 2016

Nonrelativistic statistical mechanics

$p\left(T, \mu_{i}, \mathbf{B}, \boldsymbol{\omega}\right) \propto \exp \left[\left(-E+\mu_{i} Q_{i}+\boldsymbol{\mu} \cdot \mathbf{B}+\boldsymbol{\omega} \cdot \mathbf{J}\right) / T\right]$

Decay	C
parity-conserving: $1 / 2^{+} \rightarrow^{1 / 2^{+}} 0^{-}$	$-1 / 3$
parity-conserving: $1 / 2^{-} \rightarrow^{1} / 2^{+}$	0^{-}
parity-conserving: $3 / 2^{+} \rightarrow^{1} / 2^{+}$	0^{-}
parity-conserving: $3 / 2^{-} \rightarrow^{1 / 2} 2^{+}$	0^{-}
$\Xi^{0} \rightarrow \Lambda+\pi^{0}$	$-1 / 5$
$\Xi^{-} \rightarrow \Lambda+\pi^{-}$	+0.900
$\Sigma^{0} \rightarrow \Lambda+\gamma$	$-1 / 3$

$$
\mathbf{S} \approx \frac{S(S+1)}{3} \frac{\omega}{T}
$$

TABLE I. Polarization transfer factors C (see eq. (36)) for important decays $X \rightarrow \Lambda(\Sigma) \pi$
[28] L. D. Landau and E. M. Lifshits, Statistical Physics, 2nd Ed., Pergamon Press, 1969.
[29] A. Vilenkin, "Quantum Field Theory At Finite Temperature In A Rotating System," Phys. Rev. D 21, 2260 (1980). doi:10.1103/PhysRevD.21.2260

Azimuthal distributions relative to the RP

Azimuthal distributions relative to the RP

For the technical reasons (correction for the finite RP resolution, treating acceptance effects, etc.) it is easier to perform the analysis in azimuthal space

$$
\cos \phi^{*}=\cos \theta_{p} \sin \left(-\phi_{p}\right)
$$

$$
\Lambda \rightarrow p+\pi^{-}
$$

$$
\frac{d N}{d \cos \theta^{*}} \propto 1+\alpha_{H} P_{H} \cos \theta^{*}
$$

$$
\text { STAR, PRC76, } 024915 \text { (2007) }
$$

$$
P_{H}=\frac{8}{\pi \alpha_{H}}\left\langle\sin \left(\Psi_{\mathrm{RP}}-\phi_{p}\right)\right\rangle
$$

$$
\begin{array}{|c|}
\hline K^{* 0} \rightarrow \pi+K \\
\hline \hline \phi \rightarrow K^{-}+K^{+} \\
\hline
\end{array}
$$

$$
\frac{d N}{d \cos \theta^{*}} \propto\left(1-\rho_{00}\right)+\left(3 \rho_{00}-1\right) \cos ^{2} \theta^{*}
$$

$$
\rho_{00}=\frac{1}{3}-\frac{8}{3}\left\langle\cos \left[2\left(\phi_{p}^{*}-\Psi_{\mathrm{RP}}\right)\right]\right\rangle
$$

[^0]: Francesco Becattini, ${ }^{1}$ Iurii Karpenko, ${ }^{2}$ Michael Annan Lisa, ${ }^{3}$ Isaac Upsal, ${ }^{3}$ and Sergei A. Voloshin ${ }^{4}$

[^1]: Z.-T. Liang, X.-N. Wang / Physics Letters B 629 (2005) 20-26

