Highlights from the ATLAS Experiment

Tsukuba Global Science Week 2017, September 26, 2017 Hideki Okawa

University of Tsukuba, Faculty of Pure and Applied Sciences & CiRfSE

CERN & LHC

- CERN (European Organization for Nuclear Research) is located at Geneva, Switzerland.
- Large Hadron Collider (LHC) is one of its "flagship" projects with the circumference of 27 km, providing p-p, p-Pb & Pb-Pb collisions at the energy frontier (√s=13 TeV for p-p, √s_{NN}=2.76, 5.02 TeV for Pb-Pb, p-Pb) & have 4 major experiments.
- Reached a new record of 1.75 times the design luminosity in 2017. H. Okawa TGSW 2017, September 26, 2017

- ATLAS is one of the two generic purpose detectors at the LHC, being able to measure variety of phenomena (QCD, electroweak, b-physics, top-quark, new physics searches, heavy ion) with a wide dynamic range (MeV \rightarrow TeV).
- ATLAS has already recorded ~23 fb⁻¹ of data this year. Likely to collect another ~25 fb⁻¹ by the end of this year, but it will depend on the LHC status.

ATLAS Experiment

- ATLAS is one of the two generic purpose detectors at the LHC, being able to measure variety of phenomena (QCD, electroweak, b-physics, top-quark, new physics searches, heavy ion) with a wide dynamic range (MeV→TeV).
- ATLAS has already recorded ~23 fb⁻¹ of data this year. Likely to collect another ~25 fb⁻¹ by the end of this year, but it will depend on the LHC status.
- Due to the increase in luminosity, the pileup is continuously going up from 2015-2017 (one of the major challenges at the LHC).

Beyond Higgs Discovery

- In 2012, ATLAS & CMS experiments have discovered a Higgs boson.
 - Consistent with the Standard Model so far.
 - However, we have only observed a small fraction of the overall Higgs potential.
- Is the discovered Higgs boson really consistent with the Standard Model? (Any anomalous coupling or decay? Heavy Higgs bosons? Is it elementary of composite?)
- Is there anything between the electroweak (EW) & Planck scales?

Measurements in the Electroweak & Higgs Sectors

- W boson mass depends on the 3 SM parameters (α ,G_{μ},m_Z) as well as the higher order corrections, mainly from the top quark & Higgs masses (Δr)_o
- α : fine structure constant, G_{μ} : Fermi constant, m_Z : Z boson mass, Δr : higher order corrections

- Δr could contain contributions from new heavy particles.
- Currently, uncertainties on the W mass are dominantly limiting the SM validity checks.

W Mass Measurement

First LHC measurement of the W mass!

- Simultaneous fit on the lepton p_T & transverse mass m_T templates. Reaching the **Tevatron sensitivity.**
- Dominant sources of systematic uncertainties are from the lepton reconstruction. W recoil, parton distribution function (PDF) & parton shower.
- There is space for improvement in both the experimental & theoretical uncertainties.
- Adding the $\sqrt{s}=8 \& 13$ TeV data would help, but the pileup is challenging.

H. Okawa

TGSW 2017, September 26, 2017

- Results from ATLAS & CMS are consistent, but systematically lower than the Tevatron(?)
 - ATLAS: 172.84 ± 0.70 GeV
 - CMS: 172.44 ± 0.48 GeV
 - Tevatron: 174.34 ± 0.64 GeV
- The precision will reach 0.3-0.4 GeV at the future LHC. Sufficient for the Standard Model test. Higher precision would not hurt for the vacuum stability checks.

ATLAS+CMS Preliminary L	HCtop WG m_{top} summary, $\sqrt{s} = 7-8$ TeV	May 2017		
World Comb. Mar 2014, [7 stat total uncertainty $m_{top} = 173.34 \pm 0.76$ (0.36] total stat ± 0.67) GeV m_+ total (stat + svet)	Vs Bof		
ATLAS I+iets (*)	172.31 + 1.55 (0.75 + 1.35)	7 TeV [1]		
ATLAS dilepton (*)	$172.07 \pm 1.00 (0.70 \pm 1.00)$	7 TeV [1]		
CMS. I+iets	173.49 + 1.06(0.43 + 0.97)	7 TeV [3]		
CMS. dilepton	$172.50 \pm 1.52 (0.43 \pm 1.46)$	7 TeV [4]		
CMS, all jets	$173.49 \pm 1.41 (0.69 \pm 1.23)$	7 TeV [5]		
LHC comb. (Sep 2013)	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [6]		
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7]		
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]		
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]		
ATLAS, all jets	■ + 175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [9]		
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [10]		
ATLAS, dilepton	172.99 ± 0.85 (0.41 ± 0.74)	8 TeV [11]		
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [12]		
ATLAS comb. (June 2016)	+ ▼ 1 172.84 ± 0.70 (0.34 ± 0.61)	7+8 TeV [11]		
CMS, I+jets	H 172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [13]		
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]		
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [13]		
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [14]		
CMS comb. (Sep 2015) ⊢	₩ 172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]		
(*) Superseded by results shown below the line	[1] ATLAS-CONF-2013-046 [6] ATLAS-CONF-2013-102 [2] ATLAS-CONF-2013-077 [7] arXiv:1403.4427 [3] JHEP 12 (2012) 105 [8] Eur.Phys.J.G75 (2015) 330 [4] Eur.Phys.J.C72 (2012) 2202 [9] Eur.Phys.J.C75 (2015) 158 [5] Eur.Phys.J.C72 (2014) 2758 [10] ATLAS-CONF-2014-055	 Phys.Lett.B761 (2016) 350 arXiv:1702.07546 Phys.Rev.D93 (2016) 072004 arXiv:1703.02530 		
165 170	175 180	185		
100 170		100		
m _{top} [GeV]				

Beyond Higgs Discovery

- Higgs boson was discovered by the "Golden" channels: $\gamma\gamma$, ZZ*($\rightarrow 4\ell$) at LHC Run-1. LHC Run-2 is the dawn of the Higgs precision measurements.
- The two channels were combined to measure the cross section & mass, as well as the signal strengths of various production modes.

Beyond Higgs Discovery RFSE

√s [TeV]

[dd]

 σ_{VBF}

35

30

20

15

10

Combined 68% CL

Combined 95% CL

H→ZZ→4I* 68% CL

H→γγ 68% CL

SM prediction

20

30

10

Best fit

ATLAS Preliminary

 \sqrt{s} = 13 TeV, 36.1 fb⁻¹

50

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$

m_H = 125.09 GeV, ly, l<2.5

60

70

 σ_{ggF} [pb]

- Higgs production cross section matches very well (within 2.5%) with the N³LO prediction.
- There is ~2σ excess in the VBF mode, but CMS observes the opposite.

Higgs Diff. Cross Sections

- Kinematic distributions (Higgs p_T, y, number of jets & jet p_T) are important probes to check the validity of the perturbative QCD and to understand/ improve the Monte Carlo generators.
- Higgs p_T is also sensitive to physics beyond the Standard Model & is important to measure it precisely.

Higgs Mass

- Similar precision (~0.2%) with the ATLAS-only Run-2 data as the Run-1 (ATLAS+CMS) measurement.
- $\gamma\gamma \& ZZ^*(\rightarrow 4\ell)$ channels are compatible in precision.
- $ZZ^*(\rightarrow 4\ell)$ channel is dominated by the statistical uncertainties.
- γγ channel needs to cope with the systematic uncertainties (electromagnetic calorimeter response & materials from the inner detectors) to further reduce the uncertainties.

H(bb) Observation

- H(→bb) has the largest branching fraction (58%), but was difficult to observe due to the large BG.
- WH, ZH production mode has the highest sensitivity.
- Considered m_{bb} & various kinematic distributions as inputs to multivariate analyses (boosted decision tree; BDT).

- 0 lepton: $Z(\rightarrow \nu\nu)H(\rightarrow b\overline{b})$
- 1 lepton: $W(\rightarrow \ell \nu)H(\rightarrow b\overline{b})$

• Grouped into 8 categories by the numbers of leptons/ jets & W/Z $p_{\text{T}}.$

TGSW 2017, September 26, 2017

- First observation of H(bb)! (3.5 σ [obs], 3.0 σ [exp]) Later confirmed by CMS (3.3 σ [obs], 2.8 σ [exp]).
- Consistent results with the cut-based analysis (performed as a cross-check).
- Currently looking into ttH & other production modes. Gluon fusion mode was initially considered to be challenging/impossible, but may be doable with a new technique: boosted Higgs tagging using large-R jets.

Heavy Higgs & Other Resonance Searches

Heavy Higgs Searches

- If the Higgs sector is extended by another doublet (Two Higgs Doublet Model; 2HDM), the decay modes depend on the heavy Higgs mass & tan β .
- Neutral Heavy Higgs (H/A) searches:
 - High tan β : $\tau^+\tau^-$
 - Low tan β : ZZ,Zh,WW (m_{H/A} < ~2m_t) tt (m_{H/A} > ~2m_t)
- Charged Higgs (H^{±)} searches (dominated by tb, $\tau^{\pm}\nu$)
- If the Higgs sector is extended by a triplet, there could also be doubly-charged Higgs (H^{±±}).
- If the Higgs is composite, there could be diboson resonances in the TeV region?

It is crucial to perform diverse searches assuming various scenarios.

TGSW 2017, September 26, 2017

Events / GeV

10⁴

10³

10²

10

10⁻¹

5

-5

70

100

Significance

ATLAS Preliminary

 $au_{\mathsf{lep}} au_{\mathsf{had}} b$ -tag

 $\sqrt{s} = 13 \text{ TeV}$. 36.1 fb⁻¹

200

 $m_{\mathrm{T}}(a,b) = \sqrt{2p_{\mathrm{T}}(a)p_{\mathrm{T}}(b)[1-\cos\Delta\phi(a,b)]}$

$h/H/A \rightarrow \tau^+\tau^-$

- Particularly important for high tan β scenarios.
- Search for $\tau\tau$ resonances, at least with one hadronic τ ($\tau_{lep}\tau_{had}$, $\tau_{had}\tau_{had}$) b-tagged, b-veto categories.
 - $\tau_{had}\tau_{had}$ is more sensitive in the high mass region.

10

10⁻¹

10⁻²

5

0

-5

Significance

Events / GeV

Categorized into b-veto & b-tag regions to search for gluon fusion & bb-associated processes respectively.

Data

 $\square Jet \rightarrow \tau fake$

= A+H (300)

A+H (500)

A+H (800)

 $\Box Z/\gamma^* \rightarrow \tau \tau$

<u></u>Z/γ*→II

C Top Diboson

300 400

 $m_{\rm T}^{\rm tot}(au_{
m lep}, au_{
m had-vis}, E_{\rm T}^{
m miss})$ [GeV]

w/o b-iet w/ b-iets

- Visible excess of 3.6 σ (global 2.2 σ) at 240 & 700 GeV. Mainly 4e for 240 GeV.
 - 700 GeV is not expected from the 2HDM.
- 700 GeV excess not observed in $\ell \ell \nu \nu$, $\ell \ell qq$ (deficit in the latter..)
- Need improvement on the ZZ BG estimation for 4ℓとℓℓνν (currently fully relying on MC w/ NNLO QCD & NLO EW precision).

H. Okawa

TGSW 2017, September 26, 2017

A(→Zh)

- Important for low tanβ & m_A<2m_t cases.
- Similar strategies as the Vh(→bb) measurement.
- Visible excess ~440 GeV (3.6 σ local, 2.4 σ global).
 - In both gluon fusion & bbA production modes.
- If it is form 2HDM, there might also be tt resonances.
 - Though, challenging due to the negative interference.

10⁻³ 400 600 800 1000 1200 1400 1600 1800 2000 m_Δ [GeV]

TGSW 2017, September 26, 2017

Excesses Gone?

- Two famous excesses in $\gamma\gamma$ (750 GeV) & diboson resonance (~2 TeV) searches seem to have been from statistical fluctuations.
- There is still a 3σ excess in spin-2 $\gamma\gamma$ searches, but the local significance is rather small.

Dark Matter & Supersymmetry

Dark Matter@LHC

Dark matter from cascade decays from Supersymmetric particles

Dark matter could be produced through cascade decays from new particles (e.g. supersymmetric partners) or directly via mediator.

Supersymmetry

I. Vivarelli

RfSF

- EW-scale Supersymmetry (SUSY) is motivated by three outstanding points (though naturalness is becoming less compelling now due to the lack of low mass SUSY particles).
- Supersymmetry predicts existence of a new set of partner particles ("sparticles") to the Standard Model ones.

TGSW 2017, September 26, 20

m(g) [GeV]

H. Okawa

- **Top squarks (or "stop's")** could have relatively low masses (& possibly reachable by the LHC) due to naturalness.
- Its decay pattern depends on the mass difference between the lightest supersymmetric particles (LSP's) and stop's.

m_{stop} ~ 950 GeV is excluded for large phase space. Nature seems to be "finetuned" at some level.

More Generic DM Searches

Summary

- Properties of the discovered Higgs boson is consistent with the Standard Model so far.
- However, for new particle searches, there are a few excesses here and there, and they should be investigated further with more data.
- We will continue the precision measurements & searches with more data, and will also introduce various improvements and here methodologies to improve sensitivities to new phenomena.

Backup

Top Mass Prospects

Hideki Okawa

Notable increase in the cross section (×2.3 for ggH, ×3.9 for tt

H, ×3.3 for HH) from √s=8→13 TeV.

• Run-2 is the dawn of precision measurements for the Higgs boson & discovery phase of the tter.

TGSW 2017, September 26, 2017

Higgs Decays

LHC Higgs Cross Section Working Group

- $\gamma\gamma$, ZZ(\rightarrow 4I): Discovery channels. Small branching ratios (BRs), but good mass resolution & clean signatures.
- WW(→IvIv): Large BR, good sensitivity, but poor mass resolution due to two neutrinos.
- bb: Has the largest BR, but suffers from large BG. The last major channel to be observed.
- ττ: Good sensitivity with the VBF prod. <u>Observation of Higgs-fermion</u> coupling.
- $Z\gamma$, $\mu\mu$: Very low BRs. Need to wait until the HL-LHC for $\mu\mu$. $Z\gamma$ is challenging even for the HL-LHC.

Snowmass, Energy Frontier Report, 2013

 κ_b

 $\sim 6\%$

 $\sim 10\%$

 $\sim 1.6\%$

 $\sim -2\%$

-(3-9)%

 κ_V

 $\sim 6\%$

 $\sim 1\%$

 $\sim -0.0013\%$

 $\sim -3\%$

 $\sim -2\%$

Singlet Mixing

H→inv.: BR < 10% w/ 3000 fb⁻¹ using the Z(II)H channel only. With a reduced systematics, the VBF will provide a tighter constraint (CMS-DP <u>-2016-064</u>).

 $H \rightarrow \mu\mu$: 7.0 σ significance w/ 3000 fb⁻¹ w/ATLAS. Probe coupling dependence on lepton-flavor.

- Similar precision between ATLAS/CMS
- ATLAS Simulation Preliminary **CMS** Projection √s = 14 TeV: ∫Ldt=300 fb⁻¹ ; ∫Ldt=3000 fb⁻¹ Expected uncertainties on 3000 fb⁻¹ at $\sqrt{s} = 14$ TeV Scenario 1 $H \rightarrow \mu\mu$ (comb.) 3000 fb⁻¹ at \sqrt{s} = 14 TeV No Theory Unc. Higgs boson signal strength $H \rightarrow \tau \tau$ (VBF-like) $H \rightarrow \gamma \gamma$ Scenario 1: hashed: w/ $H \rightarrow WW$ same systematics $H \rightarrow ZZ$ (comb.) current as Run 1 theory unc. H→ZZ H→ WW (comb.) Same systematics $H \rightarrow bb$ as Run 1, but w/o H→ Zγ (incl.) $H \rightarrow \tau \tau$ theory unc. Η→γγ (comb.) 0.00 0.05 0.10 0.15 expected uncertainty 0 0.2

0.15

0.4

 κ_{γ}

 $\sim 6\%$

 $\sim 1\%$

< 1.5%

 $\sim -9\%$

 $\sim +1\%$

35

 $\Delta \mu / \mu$

0.05

0.00

0.00

0.05

Higgs Coupling

0.10 expected uncertainty

Model

2HDM

Decoupling MSSM

Composite

Top Partner

Higgs Self-Coupling

Decay Channel	Branching Ratio	Total Yield (3000 fb^{-1})
$b\overline{b} + b\overline{b}$	33%	4.1×10^{4}
$b\overline{b} + W^+W^-$	25%	3.1×10^4
$b\overline{b} + \tau^+\tau^-$	7.4%	$9.0 imes 10^3$
$W^+W^- + \tau^+\tau^-$	5.4%	6.6×10^3
$ZZ + b\overline{b}$	3.1%	3.8×10^3
$ZZ + W^+W^-$	1.2%	1.4×10^3
$\gamma\gamma + b\overline{b}$	0.3%	$3.3 imes 10^2$
$\gamma\gamma + \gamma\gamma$	0.0010%	1

- HL-LHC provides sizable statistics of pair-produced Higgs boson events.
 - Constraints on the Higgs self-coupling can be extracted from non-resonant HH production.
 - bbγγ: -0.8 < λ_{HHH}/λ_{SM} < 7.7 (95%CL, no syst.) bbbb: 0.2 < λ_{HHH}/λ_{SM} < 7.0 (95%CL, no syst.), -3.5 < λ_{HHH}/λ_{SM} < 11 (95%CL, Run-2 syst.) bbττ: -4 < λ_{HHH}/λ_{SM} < 12 (95%CL, no syst.)
- **These are all cut-and-count studies.** Sensitivities should improve with shape information.

Heavy Higgs

tang 8.2

2.6

2.4

2.2

1.8

1.6

1.4

100

50

10

5

 $tan(\beta)$

J.Baglio, A.Djouadi, J.Quevillon, Rep. Prog. Phys. 79 (2016) 116201

- Large phase space of the M_A -tan β plane up to MA~1 TeV will be covered by the various channels under consideration
- A/H $\rightarrow \tau \tau$, tt are dominant in the high mass region.

ATL-PHYS-PUB-2013-016

