Bursts of star formation and gas outflows in galaxies

Dragan Salak
University of Tsukuba
Faculty of Pure and Applied Sciences

September 29, 2014
Outline

1. Star formation and starburst galaxies
2. Superwinds and galaxy evolution
3. Case study
 • Observations of the galaxy M82
Star formation in galaxies

- Star formation occurs in molecular clouds (e.g., Kennicutt 1998, Kennicutt et al. 2007; Krumholz et al. 2011)
- Observations of molecular gas → understand star formation → key to galaxy evolution

Spiral galaxy M51 (Credit: HST)
Baryon flow in a typical disk galaxy

Mass budget in our Galaxy:

- Dark matter
- Baryons (~10%) = visible matter
 ~90% of baryons in stars, ~10% in interstellar medium (ISM)
 (gas, dust grains, PAHs, cosmic rays)

```
ISM
~7 x 10^9 M_{sun}
```

Star formation rate
~1.3 M_{sun}/yr

Star formation sustainable over ~10^9 yr

Supernova explosions, stellar winds, etc.
~0.5 M_{sun}/yr

Stars
Star formation feedback in starburst galaxies

Starburst galaxies
Star formation rate $\sim 10-100 \, M_{\text{sun}}/\text{yr}$
\rightarrow molecular gas consumed at furious rate

ISM

Superwind
Outflow of gas and dust

Feeding
Star formation rate

Feedback
Radiation, supernova rate

Cleg & Chevalier (1985)
Schiano (1985)
Heckman et al. (1990)
Strickland et al. (2004)
Murray et al. (2005, 2011)
Veilleux et al. (2005)
Fabian (2012)
Krumholz & Thompson (2013)
...
Superwinds and galaxy evolution

Interaction/merging of gas-rich galaxies → Starburst (high star formation rate) → Superwind

 Suppress star formation

Transport heavy elements ($Z>2$) to intergalactic space

M82 (Credit: Chandra, HST)

Arp 220 (Credit: HST)
Multi-phase outflows: M82 case study

Mutchler et al. (2007)

Starburst nucleus

Highly inclined stellar disk

Optical (B-band)

1 kpc

Mutchler et al. (2007)

Outflow

Optical (H-alpha line)

Kilgard et al.

Outflow

X-ray (0.7-1.1 keV)

Kaneda et al. (2010)

Outflow

Infrared (PAH molecules)
Observations of molecular gas

How is molecular gas affected by the superwind?
Interstellar molecular gas is cooled by CO (J=1→0) λ=2.6 mm (J : rotational quantum number)

Nobeyama Radio Observatory
45-m telescope

Combined Array for Research in mm-wave Astronomy (CARMA)

Antenna diameter = 45m → high sensitivity
Array of 6-m and 10-m antennas → high angular resolution
Molecular gas outflow

Observations with Nobeyama 45-m telescope

- Large-scale molecular gas outflow >2 kpc above the galactic plane (1 pc = 3.1×10^{13} km)
High-resolution CO observations

CARMA + Nobeyama 45m map
highest-resolution CO map (CANON project)
(2.8 x 2.5 arcsec2 equivalent to ~45 pc)
Close-up of the molecular gas outflow

Molecular gas outflows launched from the 300-pc ring

→ How does the superwind affect star formation?
→ Can molecular gas escape?

- Outflow velocity from CO spectra
- H_2 gas mass from CO line flux
- Mass outflow rate
CO (J=1-0) intensity

Mean outflow velocity
~100 km/s

molecular gas ring inclined 80°
Superwind and the evolution of ISM in M82

Molecular gas outflow:

Mean velocity 100 km/s < escape velocity (~300 km/s)

Mass outflow rate 30 M_{\odot}/yr \geq star formation rate (~10 M_{\odot}/yr)

(e.g. Förster Schreiber et al. 2003)

Momentum rate 3×10^3 M_{\odot}/yr km/s \sim starburst input

(radiation pressure, supernovae)

\Rightarrow Molecular gas blown out within $< 10^7$ yr

\Rightarrow Strong suppression of star formation
Conclusions

• Star formation in starburst galaxies triggers the superwind feedback

• Superwinds play essential role in galaxy evolution

• Observations of M82 show outflow of hot and cold gas
 • Molecular gas will be depleted within $<10^7$ Myr
 • Star formation will be suppressed by the superwind

• Observations of galactic superwinds with new instruments (e.g., ALMA in Chile) are promising to probe starburst feedback across cosmic history

Thank you!