

Search for Lepton Flavor Violating τ decays at Belle

K.Inami (Nagoya univ.) 2010/2/23

KEKB and Belle

KEKB: $e^+(3.5 \text{ GeV}) e^-(8\text{GeV})$ $\sigma(\tau\tau)^{\circ}0.9\text{nb},\sigma(bb)^{\circ}1.1\text{nb}$ A B-factory is also a τ -factory! Integrated luminosity: >1000 fb⁻¹ \Rightarrow >9x10⁸ τ -pairs (6~8x10⁸ for this analysis)

Belle Detector:

Good track reconstruction and particle identifications Lepton efficiency:90% Fake rate : O(0.1) % for e O(1)% for μ

Lepton flavor violation (LFV) in charged lepton sector

Many extensions of the SM predict LFV decays. Their branching fractions are enhanced as high as current experimental sensitivity ⇒Observation of LFV is a clear signature of New Physics (NP)

Tau lepton : the heaviest charged lepton

 Opens many possible LFV decay modes which depend on NP models

Event Selection

5-1 (3-1) prong events for IKsKs (IKs and 3leptons)

Select events with low multiplicity and separate two sides using thrust

- Signal (charged tracks from LFV)
- Tag (generic 1-prong decay)

Reduce background events using PID, kinematical information optimize the event selection for each mode separately

Analysis method

Optimization of event selection

Recent analysis

Simple

- τ→IK_s
- $\tau \rightarrow |f_0|$

Difficulty of reducing the BG

Dominant BG

μ: ττ and qq with π mis-ID

e: QED processes

BG reduction with

Hard

- Particle ID, Invariant mass cut
- Optimize for each final state individually
 - Introduce intelligent variables (likelihood, neural net etc.)

$\tau \rightarrow 3$ leptons

- Data: 782fb⁻¹
 Prev.: 543fb⁻¹
- No event is found in the signal region.
- Remaining BG;
 Bhabha
 e⁺e⁻→e⁺e⁻µ⁺µ⁻
- B<(1.5-2.7)x10⁻⁸
 - Improved the UL along with the luminosity from previous Belle result

[EPS2009,Preliminary]

$\tau \rightarrow IK_s \text{ and } IK_sK_s$

- Data: 671fb⁻¹
- Remaining BG:
 Fake lepton + real Ks from e⁺e⁻→ qq

ν

at 90%CL

• No events in signal region

Mode	ε (%)	$N_{\rm BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	s_{90}	$\mathcal{B}(\times 10^{-8})$
$\tau^- ightarrow e^- K_{ m S}^0$	10.2	$0.18{\pm}0.18$	6.6	0	2.25	2.6
$\tau^- \rightarrow \mu^- K_{\rm S}^0$	10.7	$0.35{\pm}0.21$	6.8	0	2.10	2.3
$\tau^- \to e^- K^0_{\rm S} K^0_{\rm S}$	5.82	$0.07{\pm}0.07$	11.2	0	2.44	7.1
$\tau^- \to \mu^- K^0_{\rm S} K^0_{\rm S}$	5.08	$0.12{\pm}0.08$	11.3	0	2.40	8.0

• B(τ→IK⁰s) < (2.3-2.6) x 10⁻⁸

• $B(\tau \rightarrow | K^0 s K^0 s) < (7.1-8.0) \times 10^{-8}$

⇒ improve in a factor of (31-43) from CLEO [PRD66:071101R,2002]

$\tau \rightarrow If_0$

- Data: 671fb⁻¹
- $f_0(980) \rightarrow \pi^+ \pi^- \rightarrow$ Mass restriction reduces BG significantly.

[PLB672:317,2009]

f0(980)

→ μ or e

h, H

τ**→**lhh'

- Data: 671fb⁻¹
- Dominant BG:
 - $\tau \rightarrow \pi \pi \pi \nu$ with mis-ID, e⁺e⁻ \rightarrow qq
- B<(3.3-16)x10⁻⁸

	(0.1)		(0.4)				= -0.2	• · ·
Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	s_{90}	$\mathcal{B}(10^{-8})$		•
$\tau^- \to \mu^- \pi^+ \pi^-$	3.69	1.12 ± 0.38	5.9	0	1.53	3.3	-	•
$\tau^- \to \mu^+ \pi^- \pi^-$	3.84	0.73 ± 0.25	5.9	0	1.77	3.7		1.7
$\tau^- \rightarrow e^- \pi^+ \pi^-$	3.99	0.34 ± 0.15	6.0	0	2.15	4.4		1.7
$\tau^- \to e^+ \pi^- \pi^-$	3.91	0.10 ± 0.07	6.0	1	4.21	8.8	S	
$\tau^- \to \mu^- K^+ K^-$	2.40	0.52 ± 0.23	6.7	0	1.92	6.8	0.2 ق	⊢(a)7
$\tau^- \to \mu^+ K^- K^-$	2.07	0.00 ± 0.06	6.8	0	2.46	9.6	ΔE	
$\tau^- \to e^- K^+ K^-$	3.50	0.11 ± 0.08	6.5	0	2.35	5.4	0	
$\tau^- \to e^+ K^- K^-$	3.28	0.05 ± 0.05	6.6	0	2.43	6.0	0	•
$\tau^- \to \mu^- \pi^+ K^-$	2.63	0.67 ± 0.14	6.3	2	5.05	16		
$\tau^- \to e^- \pi^+ K^-$	3.02	0.33 ± 0.19	6.4	0	2.12	5.8	-0.2	- ●.
$\tau^- \to \mu^- K^+ \pi^-$	2.60	1.04 ± 0.32	6.3	1	3.34	10		
$\tau^- \to e^- K^+ \pi^-$	2.98	0.57 ± 0.19	6.4	0	1.90	5.2	-0.4	– L
$\tau^- \to \mu^+ K^- \pi^-$	2.61	1.37 ± 0.21	6.3	1	3.16	9.4		1.7
$\tau^- \to e^+ K^- \pi^-$	2.83	0.10 ± 0.07	6.4	0	2.40	6.7		

arXiv:0908.3156 [hep-ex]

 $(a) au^-$

 $\rightarrow \mu^{-}\pi^{+}\pi^{-}$

1.8

 $\rightarrow e^{-}\pi^{+}\pi^{-}$

1.8

 $M_{e\pi\pi} (GeV/c^2)$

 $M_{\mu\pi\pi}$ (GeV/c²)

∆E (GeV) 700

0

LFV results

Effect to physics models

- Experimental results have already ruled out some parts of the parameter space.
 - Exclude large tan β , small SUSY/Higgs mass

	reference	τ→μγ	τ→μμμ
SM+ v mixing	PRD45(1980)1908, EPJ C8(1999)513	Undetectable	
SM + heavy Maj v _R	PRD 66(2002)034008	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	PLB 547(2002)252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10 ⁻¹⁰
mSUGRA+seesaw	PRD 66(2002)115013	10-7	10 ⁻⁹
SUSY Higgs	PLB 566(2003)217	10 ⁻¹⁰	10 ⁻⁷

Accessing other models and other parameter space

Future prospects

- In super B-factory, N_{τ} will be >10¹⁰.
- Sensitivity depends on BG level.
 - Recent improvement of the analysis

(BG understanding, intelligent selection)

- → Improve achievable sensitivity
- B(τ→μμμ)~O(10⁻¹⁰)
 at 50ab⁻¹
- Improvement of BG reduction is important.
 - Beam BG
 - Resolution

Summary

- Search for LFV τ decays using ~10⁹ τ decays – 48 modes are investigated.
- <u>No evidence</u> is observed yet.
- Upper limits on branching ratio around O(10⁻⁸)
 - − B($\tau \rightarrow \mu \mu \mu$)<2.1x10⁻⁸, B($\tau \rightarrow \mu K_s$)<2.3x10⁻⁸, etc.
 - Exploring some new-physics parameters space.
 - Optimization for BG reduction is important.
- Plan
 - Finalize LFV search with full data set
 - Hadronic decay
 - Decay structure for hadronic decay with Kaon
 - Rare decay, CPV decay, EDM etc.

Luminosity

Integrated luminosity: >1000 fb⁻¹ \Rightarrow >9x10⁸ τ -pairs (6~8x10⁸ for this analysis)

