Measurement of the Superparticle Mass Spectrum in the Long-Lived Stau Scenario at the LHC

Takumi Ito Tohoku University

In collaboration with R. Kitano and T. Moroi, arXiv:0910.5853[hep-ph]

特定領域「フレーバー物理の新展開」研究会 2010 2010.2.23

Supersymmetry : an important target of the LHC experiments.

Signature of SUSY at the LHC strongly depends on what the LSP in the MSSM sector (= "MSSM-LSP") is!

Popular candidates of MSSM-LSP are:

Long-lived stau scenario

↔ Stau behaves as a "heavy muon" in high energy experiments.

* We can measure stau's charge, momentum, velocity and energy.

 \rightarrow The stau mass can be measured. [Ambrosanio et al.(01), Ellis et al.(06,07)]

→ All final state particles (= SM particles & stau) in the event are visible. (Of course, except v.)

* A slow-moving charged track (= stau) informs us a production of superparticles.

 \rightarrow we can reduce SM backgrounds significantly.

→ We have a opportunity to *probe the SUSY in detail!*

Long-lived stau scenario

* It is naturally realized if $tan\beta$ is large.

* Cosmological problems can be **avoided** if there is weekly interacting LSP (i.e. gravitino, axino, ...).

This scenario is not an unrealistic scenario.

→ We may observe *stau's track at the LHC.*

We discuss a determination of the superparticle masses at the LHC experiments in the model with the long-lived stau.

Assumptions and Outline

Assumptions

- * Stau is stable in the detector.
- [Ambrosanio et.al.(01)] * Stau with v < 0.9c can be identified as "stau", *not muon.*
- * No SM backgrounds. \leftarrow Since there is at least one stau in the SUSY event.
- * The stau mass has been measured. (accuracy $\sim 100~MeV$) [Ambrosanio et al.(01), Ellis et al.(06,07)]

Sample Model

GMSB [Dine,Nelson,Shirman(95)] $\Lambda = 60 \text{TeV}, M_{\text{mess}} = 900 \text{TeV},$ $N_5 = 3, \tan \beta = 35, \dots$

\tilde{g}	1309
\widetilde{q}_L	1230
${ ilde q}_R$	1180
$ ilde W^0$	426
$ ilde{B}$	240
$\tilde{\mathrm{e}}_R$	194
$\sim \tilde{\mu}_R$	193
$ ilde{ au}_1$	149
	$ \begin{array}{c} \tilde{g} \\ \tilde{q}_L \\ \tilde{q}_R \\ \tilde{W}^0 \\ \tilde{B} \\ \tilde{e}_R \\ \tilde{\mu}_R \\ \tilde{\tau}_1 \end{array} $

Monte Carlo Analysis

The decay

products can

be observed.

- * Event Gen. by HERWIG6.510
- * Fast Detector Sim. by PGS4

* 67k events are generated. (\leftrightarrow 100 fb⁻¹, 14 TeV)

masses are in GeV

The lightest neutralino (bino) decay

 $bino \to \tau + stau$

We consider hadronic decay mode of τ -lepton.

 \leftrightarrow Some part of the energy of τ is taken away by τ -neutrino.

Event Selection

(1) At least one stau with 0.4c < v < 0.9c

(2) At least one τ -tagged jet with $p_T > 15 \text{ GeV}$

To reduce BGs, we adopt a charge subtraction:

OS (τ stau) – SS (τ stau) = Signal

 \rightarrow Bino mass measurement : $\delta m_{\tilde{B}} \sim 1 \ {
m GeV}$

Also, wino mass can be measured by using charge subtraction.

This endpoint is not clear before we adopt charge subtraction.

Also, wino mass can be measured by using charge subtraction.

ightarrow Wino mass measurement : $\delta m_{ ilde W^0} \sim 5~{
m GeV}$

2-step SUSY decay chain:

bino $\rightarrow \ell$ + slepton ,

slepton $\rightarrow \ell + \tau + stau$; followed by $\tau \rightarrow \tau$ -jet + ν_{τ}

Collinear approximation; $p_{\tau} = r p_{\tau-\text{jet}} \ (r \ge 1)$

The value of r is determined by the condition: $m_{\tilde{B}}^2 = (p_{\ell^+} + p_{\ell^-} + rp_{\tau-jet} + p_{\tilde{\tau}_1})^2$ Then, $M_{\tilde{\ell}} = \sqrt{(p_{\ell} + rp_{\tau-jet} + p_{\tilde{\tau}_1})^2}$

Event Selection

(1)(2) At least one pair of stau and τ -tagged jet (OS) (3) At least one pair of leptons(SF,OS) with $p_T > 15$ GeV

The mass difference of two sleptons, $\,M_{{
m \widetilde{e}}}-M_{{
m \widetilde{\mu}}}$,

is not sensitive to the uncertainty of the bino mass.

The mass difference measurements with the good accuracy.

Implications for the SUSY breaking mechanism

* Loop effects to the slepton masses (Yukawa interaction)

 $\rightarrow M_{\tilde{e}} - M_{\tilde{\mu}} \sim O(100) \text{ MeV}$ for the large tanß

* The size of SUGRA effects are estimated $\sim m_{3/2}^2/m_{\tilde{\ell}}$ \rightarrow if $m_{3/2} \sim ~$ a few GeV, $M_{\tilde{e}} - M_{\tilde{\mu}} \sim O(100) ~$ MeV

 \rightarrow These effects are detectable.

Squark Masses

2-step SUSY decay chain:

squark \rightarrow q + bino,

bino $\rightarrow \tau$ + stau ; followed by $\tau \rightarrow \tau\text{-jet} + \nu_{\tau}$

τ's momentum is reconstructed by $m_{\tilde{B}}^2 = (r p_{\tau-{
m jet}} + p_{ ilde{ au}_1})^2$

Then,
$$\sim M_{\tilde{q}} = \sqrt{(p_{\text{jet}} + r p_{\tau - \text{jet}} + p_{\tilde{\tau}_1})^2}$$

Event Selection

- (1)(2) At least one pair of stau and τ -tagged jet
- (3) At least one jet with $p_T > 100 \text{ GeV}$
- (4) No isolated leptons with $p_T > 15 \text{ GeV}$

Squark Masses

We use upto leading 4 high- p_T jets, and perform charge subtraction.

$$\begin{split} M_{\tilde{q}} &= 1172 \pm 1 \text{ GeV} \\ & (1180: \text{Squark(R)}) \\ & [\text{BR}(\tilde{q}_R \to q \tilde{\chi}_1^0) \simeq 100\%] \end{split}$$

Uncertainties * Statistics + Systematics (± 1 GeV) + (- 8 GeV) * From the error of stau mass ± 100 MeV * From the error of bino mass

± 1 GeV

ightarrow Squark mass measurement : $\delta m_{ ilde{q}} \sim 10~{
m GeV}$

Conclusions

- We have discussed mass measurements of superparticles in the long-lived stau scenario at the LHC experiments.
 - * Neutralino Masses

by endpoint analysis : $\delta m_{\tilde{B}} \sim 1 \text{ GeV}, \, \delta m_{\tilde{W}^0} \sim 5 \text{ GeV}$ charge subtraction method is useful.

* Selectron & Smuon Masses ($m_{\tilde{B}} > m_{\tilde{\ell}_R} > m_{\tilde{\tau}_1}$) by peak analysis: $\delta m_{\tilde{e}} \sim \delta m_{\tilde{\mu}} \sim 1 \text{ GeV}$

* mass difference : $\delta(m_{\tilde{\mathrm{e}}} - m_{\tilde{\mu}}) \sim 100 \; \mathrm{MeV}$

informations for the SUSY

* Squark Masses

by peak analysis: $\delta m_{ ilde{q}} \sim 10~{
m GeV}$

backup

Another Example; Sweet Spot Model [Ibe,Kitano(07)]

slepton masses

Another Example; Sweet Spot Model [Ibe,Kitano(07)]

bino mass

VS

slepton mass

Another Example; Sweet Spot Model [Ibe,Kitano(07)]

The size of the mass difference

(for the fixed

 N_5 and Λ)

Supersymmetry : A famous extension of the Standard Model

There are several reasons to consider SUSY seriously.

- * Gauge coupling unification at the very high energy scale (GUT)
- * Candidates of Dark Matter of the Universe
- * Predicts a light higgs (prefered by EW precision measurements)
- * Naturally solves gauge hierarchy problem
- \rightarrow It will appear around TeV scale.
 - \leftrightarrow in the energy range of the LHC experiments!

So, Question is

What is a signature of SUSY at the LHC?