ARA detector calibration with Telescope Array Electron Light Source

Romain Gaior for the Chiba group
ARA: Askaryan Radio Array

- Detection of UHE cosmogenic neutrino
- Expected sensitivity 10x IceCube

- Elemental detector: string of 4 antennas (2 vert/2 hori polarization)
- 1 station = 4 strings
- 3 stations installed (37 planned)

- Coherent emission from charge excess in neutrino induced shower (Askaryan effect)
- Radio attenuation length in ice ~ 1km (at optical wavelength ~ 100 m)
- Bipolar pulse of few ns
ARA @ Utah

Concept: Shoot electrons in ice to produce a shower and observe the Askaryan like signal

Source:
- Telescope Array LINAC
- Ice block as a target

Detector:
- ARA antenna + ampli
- Fast oscilloscope

Will be conducted in January (2015)
Concept: Shoot electrons in ice to produce a shower and observe the Askaryan like signal

Source:
- TA LINAC electron beam
- Ice block as a target

Detector:
- ARA antenna + ampli
- Fast oscilloscope

Probe the parameterization of the radio signal used in ARA simulation

Check the absolute calibration of ARA antenna
Source and Target

Source: TA LINAC
- source of 40 MeV electron
- maximum of 10^9 particles/s
- bunch of few ns long divided in sub bunches (every 350 ps)
- bunch length can be changed

Target: Ice block
- 100cm x 30cm x 30 cm
- Installed in a plastic box 1m above the beam exit
- can be inclined to choose the exit angle of radio wave
E field simulations

- G4 simulation of target
- Shower length ~ 20 cm
- more plateau like than shower dev.

- each subbunch creates a separated E field

particle distribution in target

Complete E field simulation

-\[E_{beam} = 40 \text{ MeV} \]
-\[N(e-p) \]
Detector setup

Antenna tower
- Adjustable height: 7 -> 12 m
+ horizontal pole of 6m
+ antenna support for vertical and horizontal polarizations

Antennas
- two antennas at the same time
- 3-4 m from the tower
- Calibration and simulation in progress
Multiple bunches create interferences in the radio signal

Antenna response widens the signal in time

Expected signal ~ tens of mV
On site test on Nov. 2014

Purposes

1. Site check
2. Work on beam length and monitoring
3. Radio noise survey
4. «Rehearsal»
Electron Beam studies

- Bunch length reduced to 5ns *(thanks to Shibata san and KEK engineers)*
- Subbunch structure measured with FC
- Total charge measured also with WCM *(FC stops the beam)*
- Good correlation (~3% spread)
Radio noise on site

- Rather radio **quiet environment**
- No constant noise from the LINAC
- We did observe a larger noise from the **control room**

 (will be shielded in January)
Transient noise from beam

- Small signal from the beam itself (no target)
- Probably from «sudden birth»
→ small background

R. Gaior (Neutrino Frontier Dec. 2014)
Test of complete chain

- Polarized signal observed
- order of 100mV in vert.
- ... but similar without ice!

→ Transition radiation from plastic

R. Gaior (Neutrino Frontier Dec. 2014)
Test of complete chain

- Hole in plastic box
- Signal reduced by a factor 5
- Still higher than without target
- Horizontal polar. not expected
→ might have observe Askaryan like signal!

R. Gaior (Neutrino Frontier Dec. 2014)
- Vertical polarization dominant
- Radio signal dependence \sim quadratic
- Contribution from TR from air-plastic

 (will be reduced in real condition with a hole in ice box)
- Possible contribution from air-ice transition

\rightarrow Analysis ongoing to disentangle Askaryan from TR
• Experiment will be held in January
 - Everything was shipped and arrived on site
 - Mechanics work for ice box structure being done at Utah
 - Equipment tested in lab

 set up will be really better than the previous pictures !!

• 4 days of beam
 - nominal measurement ~ 1 day
 - additional tests for background characterization
• ARA @ Utah aims at a confirmation of radio coherent signal and detector calibration
• Full simulation from particle to electric field
• Design and implemented the experimental setup
• First tests on site conclusive, but TR might be an issue

Experiment conducted next January !!!
Thanks for your attention

Acknowledgements
thanks to T.A. physicists and engineers for their help
(Fukushima san, Shibata san, Ikeda san, BK Shin ...)

R. Gaior (Neutrino Frontier Dec. 2014)
Back up: Beam shape convolution

Charge ratio of the each bunch

![Graph of charge ratio vs. bunch number]

E field [V/m]

![Graph of electric field vs. time]

R. Gaior (Neutrino Frontier Dec. 2014)
Back up: Radio signal parameterization

\[\tilde{A}(\theta, t) = \frac{\mu}{4\pi R} \sin \theta \hat{p} \int_{-\infty}^{\infty} dz' \cdot Q(z') \cdot F_p \left(t - \frac{nR}{c} - z' \left(\frac{1}{v} - \frac{n \cos \theta}{c} \right) \right) \]

(J. Alvarez Muniz et al, PRD 84, 103003)

\(Q(z) \): charge at depth \(z \)

\(F_p \): Form factor (determined with full simulation)
Back up: Target setup

Ice box

Top view

- Ice box
 - Plastic box (1 cm thick, leave top open, 110 cm L x 50 cm W x 32 cm H)
 - Ice (100 cm L x 25 cm W x 30 cm H, 75 kg)
 - Hole for the beam (Krypton shield, Thin plastic)
 - Put dry ice in spaces

Side view
Back up: Target setup
Back up: Target setup

Experiment setup

beam injection point

rail structure so that we can move
ice support and we can
close the cover box

slide

wood: 50 cm W x 10 cm H x 400 cm L: ~100 kg
Or similar
Bent will be 5 mm or so

K. Mase

ARA analysis call (2014/12/15)
Back up: ARA

![Image 1](http://example.com/image1.jpg)

![Image 2](http://example.com/image2.jpg)

![Graph 1](http://example.com/graph1.png)

![Graph 2](http://example.com/graph2.png)

R. Gaior (Neutrino Frontier Dec. 2014)