

1

Status of Sterile Neutrino Search at J-PARC MLF

Shoichi Hasegawa

Advanced Science Research Center, Japan Atomic Energy Agency

20141222 NeutrinoFrontierWS

Outline

- Introduction -P56; A Search for Sterile Neutrino at J-PARC MLF
 - J-PARC, MLF
- Sterile neutrino experiment
 - LSND
 - P56
- MLF Background measurement
- P56 experimental setup
- Summary

P56;A Search for Sterile Neutrino at J-PARC MLF

 New Neutrino experiment at J-PARC Materials and Life science experimental Facility (MLF)

J-PARC bird view

MLF:Neutron and Muon source for Material and Life Science

LSND $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Signal

Appearance

1.4

With an oscillation probability of $(0.264 \pm 0.067 \pm 0.045)\%$.

3.8 σ evidence for $\overline{v}_{u} \rightarrow \overline{v}_{e}$

Los Alamos Meson Physics Facility, LANL 1993-1998

Summary of eV² region sterile experiment

10

Experiments	Neutrino source	signal	type	Significance σ
LSND	μ Decay-At-Rest	$\overline{v_{\mu}} \rightarrow \overline{v_{e}}$	appearance	3.8
MiniBooNE	π Decay-In-Flight	v _µ →v _e	appearance	3.4
		$\overline{V_{\mu}} \rightarrow \overline{V_{e}}$	appearance	2.8
		combined		3.8
Ga(calibration)	e capture	$v_e \rightarrow v_X$	disappearance	2.7
Reactors	Beta decay	$\overline{V_e} \rightarrow \overline{V_X}$	disappearance	3.0

- P56 use same process and reaction of LSND
- P56 improve statics and signal/noise ratio \rightarrow P56 confirm or refute the neutrino oscillation with sterile neutrino($v_{\mu} \rightarrow v_{e}$) completely

7

P56 vs LSND

	J-PARC P56	LSND
Beam	pulse	DC
Duty factor and background	30µs/40ms ~10 ⁻³	6% not separate v from π/ K Neutrino beam cont in Decay-in-flight
detector	LS+Gd	LS + mineral Oil Cherenkov
Coincidence from Inversed Beta Decay	delayed E=8MeV, t=30µs	delayed E=2.2MeV, t=220µs
Beam intrinsic BG	1.7x10 ⁻³	7x10 ⁻⁴
PID	n/e = 1%	n/e = 1%
Signal detection	40%	10-20%
Baseline	24m(candidate location)	30m
Signal event	480/5years	88/6years

J-PARC

Using neutrinos from only μ^+ decay at rest(DAR)

- μ⁺ has long lifetime.
- Energy spectrum of µ+→e+v_µv_edecay is well known.
 - Useful to examine the excess of $\overline{v_{e.}}$
 - $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ Oscillation can be searched.
- π⁻→μ⁻ decay chain is highly suppressed
 10⁻³ compared to μ⁺; π⁻capture in nuclei
- Proton energy of J-PARC is 3GeV, thus π+/p ratio is higher than LSND(0.8GeV) by 5-10 times

Detector; Liquid scintillator

- Coincidence between positron and neutron signal (v_e + p → e⁺ + n; Inverse Beta Decay; IBD).
- Neutrons are captured by Gd, and emit gammas (totalE = 8MeV, lifetime; a few 10 μs.)

Background meas. 3F

- MLF 3F
- Main scintillators
 - 0.5t total weight
 - 4 scintillators / 6 layers = 24 bar
 - 4 PMTs for each scintillators, double size readout
- Inner cosmic veto (yellow)
 - 4.3 cm thickness scintillators
 - One side readout
 - rejection efficiency > 99.5%
- Outer cosmic veto
 - To Compensate dead space of inner Veto
 - 1 x 1m or 1 x 2 m, 1cm thickness scintillator

IBD & Backgrounds

BG measurement; Accidental

Accidental background

$$R_{acc} = R_{prompt} \times R_{delay} \times \Delta_{VTX} \times N_{spill}$$

- - Δ_{VTX} :spatial correlation cut, rejection factor of 1/50
- -N spill: number of spills 3x108/year

-R_{prompt} , R_{delav} : BG for prompt and delay

- -Apply cosmic charged veto (neutral; γ or neutron)
 -PID measurement at Tohoku U Nal and NE213 (Rate is consistent within 6% Tohoku U and MLF)
- - γ , neutron are dominant BG in this prompt region. γ :n =3:1(20<E<60MeV)
- -Neutrons can be removed by PID in real experiment. (rejection power is 100)

- γ should be reduced.

- We try to measure background at many location with small
 Scintillator MLF 3rd floor.
- A maintenance space under location.
- Assumption; slow neutrons are captured at celling(made by concrete) and emit the isotropic γ

- This assumption makes good model of the γ production.
- 12.5 cm thick lead under the detector is needed.

BKG and Sensitivity

Source	contents	Number of Event/50t/5y	comments
BG	ν _e from μ ⁻	237	L=24m
	$^{12}C(v_e,e_{_{-}})^{12}N_{g.s}$	16	
	Beam fast Neutrons	<13(90%CI UL)	Based on meas.
	Beam fast(cosmic)	37	
	Accidental	32	Based on meas.
signal		480	Δm^2 =3.0 sin ² θ =0.003
		342	Δm ² =1.2 sin ² θ=0.003

 5σ , 3σ sensitivity

Current Set-up Plan

• Experimental location \rightarrow MLF 3F, J-PARC

This location is candidate

Detector 24m base line

MLF 3F floor

ت بلا بن بن بن بن بن بن بن

• Maintenance Area for facility

Current Set-up Plan

- Detector
 → Gd loading LS 50t
- Schedule
 - \rightarrow It takes two years to construct detector

P56 Collaboration

- Spokes Person; T. Maruyama(KEK)
- 34 members (... still evolving)
- 10 Institutions
- KEK, JAEA, RSNS Tohoku U, RCNP Osaka U, Kyoto U, Alabama U, BNL, Florida U, LANL, MIT
- 2 countries

• We invite more young physicists to join our efforts!

Including Young at Heart

November 25, 2014

M. Harada, S. Hasegawa, Y. Kasugai, S. Meigo, K. Sakai, S. Sakamoto, K. Suzuya *JAEA*, *Tokai*, *Japan*

E. Iwai, T. Maruyama¹, H. Monjushiro, K. Nishikawa, R. Ohta, M. Taira *KEK, Tsukuba, JAPAN*

> M. Niiyama Department of Physics, Kyoto University, JAPAN

S. Ajimura, T. Hiraiwa, T. Nakano, M. Nomachi, T. Shima RCNP, Osaka University, JAPAN

T. J. C. Bezerra, E. Chauveau, T. Enomoto, H. Furuta, H. Sakai, F. Suekane Research Center for Neutrino Science, Tohoku University, JAPAN

> I. Stancu University of Alabama, Tuscaloosa, AL 35487, USA

M. Yeh Brookhaven National Laboratory, Upton, NY 11973-5000, USA

> H. Ray University of Florida, Gainesville, FL 32611, USA

G. T. Garvey, C. Mauger, W. C. Louis, G. B. Mills, R. Van de Water Los Alamos National Laboratory, Los Alamos, NM 87545, USA

J. Spitz Massachusetts Institute of Technology, Cambridge, MA 02139, USA

URL http://research.kek.jp/group/mlfnu/

- P56 ; A Search for Sterile Neutrino at J-PARC MLF was proposed to 17th J-PARC PAC, Sep 2013
- First background measurement at No.2 Experimental hall, May 2013
- Second background measurement at MLF 3rd floor, June 2014. Background events is no problem for P56.
- For the experiments, it is necessary to discuss about experimental area, period and safety with the MLF. Currently, We start it.