Double Chooz physics results and prospects

Masaki Ishitsuka (Tokyo Institute of Technology) December 21st, 2014 新学術領域研究「ニュートリノフロンティア」研究会 2014 Introduction: θ_{13} and Double Chooz

- Remaining questions in neutrinos to be explored in next decades
 - $\theta_{23} > 4/\pi \text{ or } \theta_{23} < 4/\pi$
 - Mass hierarchy
 - **CP violation**
 - Dirac vs. Majorana
 - → These measurements are not independent but have correlations
- θ_{13} is essential to resolve parameter degeneracy in $\nu_{\mu} \rightarrow \nu_{e}$ oscillation

• Remaining questions in neutrinos to be explored in next decades $sin^2 2\theta_{23}=0.95$

• Remaining questions in neutrinos to be explored in next decades $sin^2 2\theta_{23}=0.95$

- Remaining questions in neutrino to be explored in next decades
 - $\circ \ \theta_{23} > 4/\pi \text{ or } \theta_{23} < 4/\pi$
 - Mass hierarchy
 - **CP violation**
 - Dirac vs. Majorana
 - → These measurements are not independent but have correlations
- θ_{13} is essential to resolve parameter degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation
 - Reactor and long baseline experiments are complementary

- Remaining questions in neutrino to be explored in next decades
 - $\theta_{23} > 4/\pi \text{ or } \theta_{23} < 4/\pi$
 - Mass hierarchy
 - **CP violation**
 - Dirac vs. Majorana
 - → These measurements are not independent but have correlations
- Best θ_{13} knowledge given by reactor neutrino experiments
 - Improvement not expected in next generation experiments
 → current measurement will be used for decades
 - O Precision of θ₁₃ relies on < 1% systematic uncertainties
 → Cross-check of θ₁₃ by three experiments
 (Double Chooz, Daya Bay, RENO) with different systematics

Reactor experiment in a nut shell

• Reactor is a free and rich electron antineutrino source

- Reactor is a free and rich electron antineutrino source
- Direct measurement of θ_{13} with no parameter degeneracy

Reactor neutrino survival probability

- Reactor is a free and rich electron antineutrino source
- Direct measurement of θ_{13} with no parameter degeneracy
- Background is strongly suppressed by delayed coincidence

Prompt signal: positron + annihilation γ 's: $1 \sim 12 MeV$

Delayed signal: γ 's from neutron capture on Gd: 8MeV

Time interval: $\Delta t \sim 30 \mu sec$

- Reactor is a free and rich electron antineutrino source
- Direct measurement of θ_{13} with no parameter degeneracy
- Background is strongly suppressed by delayed coincidence
- Flux expectation within 2% uncertainties
- Systematic uncertainties are further reduced (< 1%) using two detectors at different baselines

Three reactor experiments running

 \rightarrow flux error largely canceled

Daya Bay: deep overburden→ muon-induced background suppressed

Double Chooz experiment

edf V_e

Chooz Reactors 4.27GW_{th} x 2 cores

Near Detector L = 400m 10m³ target 120m.w.e. 2014 ~

Far Detector L = 1050m 10m³ target 300m.w.e. April 2011 ~

Double Chooz collaboration

Double Chooz detector

Double Chooz detector

Non-scintillating mineral oil Inner

Veto

Liquid scintillator

Gd loaded liquid scinti.

- Muon veto
 - No coincidence signal in IV
 - $\circ \Delta t_{\mu} > 1 \text{ msec}$
- Prompt event
 - 0.5 < Evis < 20 MeV
 - PMT light noise cuts
- Delayed event
 - \circ 4 < Evis < 10 MeV
 - PMT light noise cuts
- Coincidence
 - \circ 0.5 < Δt < 150 µsec
 - $\circ \Delta R < 100 \text{ cm}$
- BG vetoes
 - Use characteristic features of BG

- Muon veto
 - No coincidence signal in I
 - $\circ \Delta t_{\mu} > 1 \text{ msec}$
- Prompt event
 - $\circ 0.5 < Evis < 20 MeV$
 - PMT light noise cuts
- Delayed event
 - $\circ 4 < Evis < 10 MeV$
 - PMT light noise cuts
- Coincidence
 - $\circ 0.5 < \Delta t < 150 \ \mu sec$
 - $\circ \Delta R < 100 \text{ cm}$
- BG vetoes
 - Use characteristic features of BG

BG Reduction of background → Extension of signal window

→ Reduction of efficiency uncertainty

- Muon veto
 - No coincidence signal in IV
 - $\circ \Delta t_{\mu} > 1 \text{ msec}$
- Prompt event
 - $\circ 0.5 < Evis < 20 MeV$
 - PMT light noise cuts
- Delayed event
 - $\circ 4 < Evis < 10 MeV$
 - PMT light noise cuts
- Coincidence
 - $\circ 0.5 < \Delta t < 150 \ \mu sec$
 - $\circ \Delta R < 100 \text{ cm}$
- BG vetoes
 - Use characteristic features of BG

Next pages

- Muon veto
 - No coincidence signal in IV
 - $\circ \Delta t_{\mu} > 1 \text{ msec}$
- Prompt event
 - \circ 0.5 < Evis < 20 MeV
 - PMT light noise cuts
- Delayed event
 - $\circ 4 < \text{Evis} < 10 \text{ MeV}$
 - PMT light noise cuts
- Coincidence
 - \circ 0.5 < Δt < 150 µsec
- $N^{eN} \circ \Delta R < 100 \text{ cm}$
- BG vetoes
 - Use characteristic features of BG

Background: accidental

Signal: 50 event/day (2 reactors on)

Background	Rate (/day)	Reduction
Accidental	0.070±0.003	0.27
Fast neutron + stop μ	0.604±0.051	0.52
Cosmogenic isotopes	0.97+0.41/-0.16	0.78

New Reduction by dR cut

μ

Background: fast neutron + stop µ

Signal: 50 event/day (2 reactors on)

Background	Rate (/day)	Reduction
Accidental	0.070±0.003	0.27
Fast neutron + stop μ	0.604±0.051	0.52
Cosmogenic isotopes	0.97+0.41/-0.16	0.78

New Reduction of fast neutron using IV activity New Reduction of stopping µ using vertex reconstruction likelihood (chimney events suppressed)

Background: 9-Lithium

Signal: 50 event/day (2 reactors on)

Background	Rate (/day)	Reduction
Accidental	0.070±0.003	0.27
Fast neutron + stop μ	0.604±0.051	0.52
Cosmogenic isotopes	0.97+0.41/-0.16	0.78

- Longer veto applied after energetic muon in previous analysis
 Reduction by likelihood based on
 - Distance from muon track
 - Number of spallation neutrons
 - Live-time recovered
 - 4.8% dead time $\rightarrow 0.5\%$

Vertex distributions

Neutrino candidates uniformly distribute over the detector

Candidate rate vs. time

Systematic uncertainties

Source	Uncertainty (%)	Reduction wrt previous analysis
Reactor flux	1.7	1.0
Detection efficiency	0.6	0.6
Li+He BG	+1.1/-0.4	0.5
Fast-n + stop-µ BG	0.1	0.2
Statistics	0.8	0.7
Total	+2.3/-2.0	0.8

Excess around 5MeV?

Neutrino or background?

- If excess is due to background
 → Excess rate is constant (independent to reactor power)
- If excess is due to **reactor neutrino**
 - → Excess rate should be proportional to reactor power

Excess around 5MeV?

Excess rate is proportional to reactor power
→ Correlation between excess rate and reactor power indicates the cause is in reactor neutrinos

Same excess confirmed by RENO

Slide from Neutrino 2014 (by Seon-Hee Seo)

Observation of new reactor v component at 5 MeV

Double Chooz

Also confirmed by Daya Bay

Slide from ICHEP 2014 (by Weili Zhong)

ABSOLUTE SPECTRUM MEASUREMENT

∻

- Absolute shape comparison of data and prediction: χ²/ndf = 41.8/21
- Primarily relative shape comparison among detectors: $\chi^2/ndf = 134.7/146$

Cause of the distortion is not yet understood... but flux prediction is under investigation by several groups

θ_{13} comparisons

From slide at ICHEP2014 by Wei Wang (Daya Bay)

Double Chooz (this talk): Daya Bay (ICHEP 2014): RENO (Neutrino 2014):

 $\begin{aligned} \sin^2 2\theta_{13} &= 0.090 + 0.032 / -0.029 \\ \sin^2 2\theta_{13} &= 0.084 \pm 0.005 \\ \sin^2 2\theta_{13} &= 0.101 \pm 0.013 \end{aligned}$

Sensitivity with ND

Source	Uncertainty (%)
Reactor flux	1.7
Detection efficiency	0.6
Li+He BG	+1.1/-0.4
Fast-n + stop-µ BG	0.1
Statistics	0.8
Total	+2.3/-2.0

Evaluations for the ND+FD phase
0.1% (feasible with iso-flux)
0.2% (cancellation btw ND and FD)
Not canceled but improvement expected with more data

Sensitivity with ND

Source	Uncertainty (%)	Evaluations for the ND+FD phase
Reactor flux	1.7 —	\rightarrow 0.1% (feasible with iso-flux)
Detection efficiency	0.6 —	\rightarrow 0.2% (cancellation btw ND and FD)
Li+He BG	+1.1/-0.4	Not canceled but improvement
Fast-n + stop-µ BG	0.1	expected with more data
Statistics	0.8	- 0.07 O DC-II (n-Gd): FD only
Total	+2.3/-2.0	DC-II (n-Gd): ND and FD DC-III (n-Gd): FD only DC-III (n-Gd): ND and FD

Expected 1σ error on \sin^2

0.05

0.04

0.03

0.02

0.01

0.00^L

1

2

3

Range of potential precision (n-Gd): ND and FD
Improvement wrt

previous analysis

4

Total years of data-taking since April 2011

5

6

7

Improvement shown by Sensitivity reaches 0.015 in 3 years with the ND (based on extrapolation of current analysis)

→ could be further improved to 0.01 by reduction of BG uncertainty (<)

Other analyses

- θ₁₃ measurement using neutron capture on hydrogen (Phys. Lett. B723 (2013) 66-70)
 - Factor 2 more signal \rightarrow Boost schedule of DC
 - Suppression of background and systematic uncertainty required
- **o-Ps measurement** (JHEP 1410 (2014) 032)
 - Demonstration of positron signal separation from electron background
 - Enabled using waveforms from full channel FADC readout
 - Could provide new tool to study signal/background in future experiments

• Neutrino directionality (preliminary)

- Reconstruct "vector" of neutron emission from displaced vertices of prompt to delayed signals
- Attract interests in applied antineutrino physics, such as reactor monitor and geo-neutrino measurement

Summary

- Double Chooz started in 2011 Apr. with new detector design
 o First θ₁₃ reported in 2011 Nov. (non-zero θ₁₃ at 94%CL)
- Improved measurement of θ_{13} reported
 - \circ sin²2 θ_{13} = 0.090 +0.032/-0.029
 - \circ No-oscillation hypothesis is excluded by 99.9%CL (3.1 σ)
 - Spectrum distortion (characterized by excess at 4-6MeV) found in data
 - \rightarrow Later confirmed by RENO and Daya Bay
 - New publication: JHEP 10 (2014) 086
 - Expected sensitivity with ND:
 - $\delta(\sin^2 2\theta_{13}) = [0.010, 0.015]$ in 3 years