Atmospheric Neutrino and Proton Decay Studies in Super-Kamiokande

S.Mine(University of California, Irvine) for SK collaboration

Super-Kamiokande(SK)

Nucl. Instr. & Meth, A 737C (2014)

Phase		SK-I	SK-II	SK-III	SK-IV
Period	start	1996 Apr.	2002 Oct.	2006 Jul.	2008 Sep.
	end	2001 Jul.	2005 Oct.	2008 Sep.	(running)
Number	ID	11146	5182	11129	11129
of	(photo-cove	rage) <mark>(40%)</mark>	(19%)	(40%)	(40%)
PMTs	OD	1885			
Anti-implosion		no	Ves	yes yes	yes
conta	container 10 y		900		
OD segmentation		no	no	ves	ves
_		no	no	900	900
Front-end		ATM (ID)			OBEE
electronics		OD QTC (OD)		ZDDD	

• SK total ~ 17 years ²

Recent published documents by SK

(within a year)

detector calibration:

 Calibration of the Super-Kamiokande Detector, <u>Nucl. Instr. & Meth, A 737C</u> (2014)

nucleon decay searches:

- Search for proton decay via p→vK+ using 260 kiloton·year data of Super-Kamiokande, <u>Phys. Rev. D.90, 072005 (2014)</u> ←this talk
- Search for Nucleon Decay via $n \rightarrow v\pi 0$ and $p \rightarrow v\pi +$ in Super-Kamiokande, <u>Phys. Rev. Lett. 113, 121802 (2014)</u> \leftarrow this talk
- Search for Trilepton Nucleon Decay via p→e + vv and p→μ + vv in the Super-Kamiokande Experiment, <u>Phys. Rev. Lett. 113</u>, <u>101801 (2014)</u> ←this talk
- Search for Dinucleon Decay into Kaons in Super-Kamiokande, <u>Phys. Rev. Lett.</u>
 <u>112 (2014)</u>

atmospheric neutrino oscillation analyses:

- Limits on Sterile Neutrino Mixing using Atmospheric Neutrinos in Super-Kamiokande, <u>arXiv:1410.2008</u> ←this talk
- Test of Lorentz Invariance with Atmospheric Neutrinos, <u>arXiv:1410.4267</u> ← this talk

Nucleon Decay Searches

(atmospheric neutrinos as BKG)

Grand Unified Theory(GUT)

- single symmetry group G ⊃ SU(3)_{color} x SU(2)_L x U(1)_Y → single coupling constant, quantization of electric charge, etc.
- popular models:
 - SO(10) GUT:
 - 15 fermions and $v_{R}(=v_{L}^{C})$ in single representation, etc.
 - $-v_R$ as partner in seesaw mechanism $\rightarrow v_L$ mass light
 - supersymmetry(SUSY) GUT:
 - 3 coupling constants meet at ~10¹⁶GeV, gravity, etc.
- GUT predicts instability of nucleon

Nucleon decay searches in SK

- SK has the world's best sensitivities on nucleon lifetime:
 - large fiducial volume (V)
 - 22.5kt \rightarrow ~7.5 × 10³³protons
 - long stable detector operation since 1996 (T)

• lifetime limit
$$\propto - \begin{cases} \varepsilon_{sig} / 2.3 \cdot VT (BKG free) \\ \varepsilon_{sig} / \sqrt{\#BKG} \cdot \sqrt{VT} (BKG dominant) \end{cases}$$

important to increase signal efficiency and BKG rejection

- several new results published within a year
 - many analysis improvements in $p \rightarrow v K^+$
 - several new searches for the first time by SK

$p \rightarrow v K^+$ search

- dominant decay mode in SUSY GUTs
 - some models predict lifetime < ~10³⁴ years → probed by this experimental search
- many improvements in the analysis and published in <u>Phys.</u> <u>Rev. D.90, 072005 (2014)</u>
 - highlighted with Synopsis by APS editor
- major improvements since SK publication in 2005 (SK-I data):
 - new data from SK-II to SK-IV \rightarrow total: 260kt·year
 - event reconstructions and selections
 - new front-end electronics in SK-IV \rightarrow higher Michel-e ϵ

Prompt γ method: (p $\rightarrow \nu K^+$, $K^+ \rightarrow \mu \nu$ with prompt γ)

- SK cuts:
 - 1 μ -like with Michel-e, 215<P $_{\mu}$ <260MeV/c
 - proton ring rejection
 - -8(4)<N_{γ}<60(30) for SK-I,III,IV(SK-II), T_µ-T_{γ}<75ns
- major improvements in event rec.:
 - Michel-e
 - μ/p separation (new)
- for SK-I:
 - − expected #BKG: $0.7 \rightarrow 0.08$
 - − signal ε: 8.6%→7.9%
- no data candidate

45

20

15

16O->15N

200

Proton decay MC

(M.Miura)

P_{μ} spectrum method: (p→vK⁺, K⁺→µv)

- SK cuts same as the prompt γ method except:
 - relaxed momentum cut
 - no prompt γ hits
- no data excess in signal region

Data

$\pi^+\pi^0$ method: (p \rightarrow vK⁺, K⁺ \rightarrow $\pi^+\pi^0$)

- SK cuts:
 - 1 or 2 e-like rings with Michel-e
 - $85 < M_{\pi 0} < 185 MeV/c^2$, $175 < P_{\pi 0} < 250 MeV/c$
 - charge profile likelihood for $\pi^{\scriptscriptstyle +}$
 - 10<E_{bk}<50MeV (E_{bk}: visible energy for π^+)
- major improvements in event rec.:
 - single-ring π^0 fitter (new)
 - $-\pi^+$ charge profile
- for SK-I:
 - − expected #BKG: $0.6 \rightarrow 0.18$
 - − signal ε: 6.0%→7.8%
- no data candidate

Result on $p \rightarrow vK^+$ search

	· · ·		<u>^</u>	-	-
		SK-I	SK-II	SK-III	SK-IV
Exp.(kton \cdot yrs)		91.7	49.2	31.9	87.3
Prompt γ	Eff.(%)	7.9 ± 0.1 (8.6%)	6.3 ± 0.1	7.7 ± 0.1	9.1 ± 0.1
	BKG/Mt · yr	0.8 ± 0.2	2.8 ± 0.5	0.8 ± 0.3	1.5 ± 0.3
	BKG	0.08(0.7)	0.14	0.03	0.13
	OBS	0	0	0	0
P_{μ} spec.	Eff.(%)	33.9 ± 0.3	30.6 ± 0.3	32.6 ± 0.3	37.6 ± 0.3
r -	BKG/Mt · yr	2107 ± 39	1916 ± 35	2163 ± 40	2556 ± 47
	BKG	193	94.3	69.0	223.1
	OBS	177	78	85	226
$\pi^{+}\pi^{0}$	Eff.(%)	7.8 ± 0.1 (6.0%)	6.7 ± 0.1	7.9 ± 0.1	10.0 ± 0.1
	$BKG/Mt \cdot vr$	2.0 ± 0.4	3.4 ± 0.6	2.3 ± 0.4	2.0 ± 0.3
	BKG	0.18(0.6)	0.17	0.09	0.18
	OBS	0	0	0	0

K. Kobayashi et al., Phys. Rev. D 72, 052007 (2005)

- total expected #BGK < 1 for prompt $\gamma/\pi^+\pi^0$ methods
- no data excess above BGK expectation

 $\tau/B_{p \to vK+} > 5.9 \times 10^{33}$ years (90% CL)

- world's best limit
- 2.5 times more stringent than previous result (2005)
- constrains recent SUSY GUT models

$p \rightarrow e^+ \pi^0$ search

- dominant decay mode in non-SUSY GUTs
- SK cuts:
 - 2 or 3 rings, all e-like, no Michel e, $85 < M_{\pi 0} < 185 MeV/c^2(3-ring)$
 - 800<M_p<1050MeV/c², P_{tot}<250MeV/c</p>

	(kt•vr)	EII(70)	DIXG	Data
	λ	ε	b	n
SK1	91.7	39.2±0. 7	0.27	0
SK2	49.2	38.5±0.7	0.15	0
SK3	31.9	40.1 ± 0.7	0.07	0
SK4	87.3	39.5±0.7	0.22	0
Total	260.1		0.71	0

signal ε~40%, total expected #BKG~0.7
no data candidate

 $\tau/B_{p \rightarrow e\pi0} > 1.4 \times 10^{34}$ years (90% CL) (world's best limit) M.Miura

- major on-going improvements :
 - neutron tag in SK-IV
 - n + p \rightarrow d + γ (2.2MeV)
 - sophisticated event reconstruction algorithm (see Suda-san's talk)
 - reduction of systematic errors (FSI, Fermi momentum, rec.,,,), etc.

ex.) neutrino tag performance

$n \rightarrow \overline{v}\pi^0$ and $p \rightarrow \overline{v}\pi^+$ searches

Phys. Rev. Lett. 113, 121802 (2014)

- minimal SUSY SO(10) model with a **126** Higgs field predicts $\tau(n \rightarrow \nabla \pi^0) = 2\tau(p \rightarrow \nabla \pi^+) \leq 5.7-13 \times 10^{32}$ years
- data from SK-I to SK-III \rightarrow total exposure: 172.8kt·year

no excess in signal region:

 $\tau/B_{n \to v\pi 0} > 1.1 \times 10^{33}$ and $\tau/B_{p \to v\pi^+} > 3.9 \times 10^{32}$ years (90% CL)

- world's best limit
- model's allowed ranges nearly ruled out
- an order of magnitude improvement over previously published limits

$p \rightarrow evv \text{ and } p \rightarrow \mu vv \text{ searches}$ <u>Phys. Rev. Lett. 113, 101801 (2014)</u>

- some SO(10) models embedded in Pati-Salam's left-right symmetric model predict lifetimes around 10³⁰⁻³³ years
- $|\Delta(B-L)| = 2$, unusual for standard nucleon decay channels
- data from SK-I to SK-IV \rightarrow total exposure: 273.4kt·year

no significant excess in signal region:

$$\tau/B_{p \rightarrow evv} > 1.7 \times 10^{32}$$
 and $\tau/B_{p \rightarrow \mu vv} > 2.2 \times 10^{32}$ years (90% CL)

- world's best limit
- an order of magnitude improvement over previous results
- provide strong constraints to the models

Atmospheric v Oscillation Analyses

Atmospheric neutrinos

- cosmic rays strike air nuclei and decay of hadrons gives vs
- #vs > 40,000 in SK
- vs travel length: ~10-10,000km
- vs energy: ~0.1-10⁴GeV
- both vs and \overline{vs}
 - ~30% for vs in final samples
- background for nucleon decay searches

Atmospheric neutrino event topologies

average energies: - FC: ~1GeV

- PC: ~10GeV
- Up-μ: ~100GeV

• we have sensitivity to mass hierarchy, θ_{23} octant, and CPV

Updates to three flavor oscillation analyses

- "Multi-Ring Other": events which fail multi-ring e-like CC purification likelihood
- improved systematic errors
- 282.2kt·year

Multi-Ring e-like Sample Purities

Purity	CC V	CCγ _μ	CCV _τ	NC
v-like	72.2%	8.3%	3.2%	16.1%
v-like	75.0%	6.5%	2.8%	15.6%
other	30.9%	33.4%	5.1%	30.5%

External constraints with T2K

- T2K constraints on θ_{23} and Δm_{32}^2 enhance mass hierarchy discrimination
- using a common SK detector, systematic errors handled in consistent way

Results with T2K constraints

- θ_{23} : 2nd octant slightly favored
- δ_{CP} : preference near $3\pi/2$, CP conservation (sin δ_{CP} = 0) allowed at 90% CL
- $\chi^2_{IH} \chi^2_{NH} = 1.2$ (0.9 SK only), NH slightly favored

Sterile neutrino oscillations

arXiv:1410.2008

 v_{μ} survival prob.:

- no evidence of sterile oscillations (4,438days ~ 274kt·year)
- $|U_{\mu4}|^2 < 0.041$ and $|U_{\tau4}|^2 < 0.18$ for $\Delta m^2 > 0.8 eV^2$ (90% CL)

Test of Lorentz invariance

arXiv:1410.4267

no evidence of Lorentz violation observed (4,438days ~ 274kt·year)

- set limits for the first time in neutrino $\mu\tau$ sector of SME
- improved existing limits by up to 7 orders of magnitude

Summary

- Nucleon decay searches:
 - no evidence so far \rightarrow most stringent lifetime limits in the world
 - keep discovery potential and increase statistics
- Atmospheric neutrino oscillation analyses:
 - three-flavor analysis:
 - mass hierarchy: ~1 σ preference for NH
 - θ_{23} octant: 2nd octant slightly favored
 - δ_{CP} : preference near $3\pi/2$. CP conservation allowed
 - no indication of non-standard models → stringent limits on relevant parameters
- Prospect of sensitivity improvements by sophisticated reconstruction algorithm, reducing systematic errors, etc.