The Belle Silicon Vertex Detector and CP Violation 石野 宏和(東京工業大学) for the Belle Collaboration 2004年3月8日 科研費特定領域 第2回研究会 @つくば国際会議場エポカル

- イントロダクション
- SVD2とその性能
- 最新のCPの破れの測定結果と展望

Belle実験とKEKB加速器

KEKBは8GeVの電子と3.5GeV の陽電子の衝突型加速器。 最高ピークルミノシティは 120.0×10³²/cm²/s (3月1日) 世

KEKB加速器の性能

を持つ加速器

1日に約90万個のY(4S)を生成。

Belle<mark>検出器</mark>

Belle Collaboration

274 authors, 45 institutions

many nations

 B中間子系での時間に依存するCPの破れ を測定し、CKM行列の角度を測定する。

- 数億個の大量のB中間子と100µm以下の精 度でのB中間子の崩壊点の測定が必要。

- 実験を遂行するためには世界最高強度を持つKEKB加速器とSVDが必要である。

Silicon Vertex Detector (SVD)とは

2.84cm

Double sided Silicon Strip Detector (DSSD) をラダー構造に配置し荷電粒 子の通過位置を約10µmの精度で測定。

SVD

ラダーを3次元的に配置し、 荷電粒子のトラックパラメー タを測定。

バーテックスフィットによりB 中間子の崩壊点を測定。

6+12+18+18 = 54 ladders

SVDのアップグレード

- 1999年にSVD version1 (SVD1)をインストール。
 - 2003年夏まで順調に作動。
 - 4年間の間に約1Mradの放射線照射を受け、放射線耐性の限界に達しよう としていた。
- 2003年夏にSVD version2 (SVD2)をインストール。
 - 20Mrad以上の耐性を持つ。
 - 読み出しチップであるVA1TA チップが0.35µmプロセスでつくられた。
 - ラダーが3層から4層に増加、最内層の半径が3cmから2cmへ減少、立体 角が約10%向上。
 - •より高い荷電粒子検出効率とより精度良い崩壊点決定精度
 - fast shaper (75 or 300ns)とdiscriminator (TA)をVA1TAチップに実装
 - 世界初のSVDを使用したトリガーの試み。
 - データ読み出し系の改良。
 - DSPの代わりにPCをつかうことによって、約3倍以上のデータ処理速度 を達成。

SVD2ラダーの構造と組み立て

浜松フォトニクス社とメルボルン大学(オー ストラリア)で組み立て。

SVD2のインストール

news

KEK工作センターの大久保隆治さん、小池重明さん、 佐藤伸彦さん、鈴木純一さんがSVDの構造設計と製作につい て評価されて、第4回KEK技術賞を受賞なさいました。

ハドロンイベント

VA1TAチップのアンプゲインの経時変化

Layer 1

Layer 2

Layer 3

Layer 4

120

第1層目のゲインは30%減少。

アライメントとDSSD上の位置分解能

Impact Parameter Resolution

低運動量域で約20%以上改善

△z 分解能 (MC)

TAヒット情報を使ったトリガーロジックを開発中。

データ収集システムの性能

PC12台(2.4GHz Xeon dual CPU)を使用。

PC上でsparsification(ヒット したストリップデータのみを 拾う)を行う。

CPの破れ

$$\begin{vmatrix} B^{0} & f_{CP} \\ + & B^{0} & B^{0} \end{vmatrix} \begin{vmatrix} \overline{B}^{0} \\ \overline{B}^{0} & \overline{B}^{0} \\ \overline{B}^{0} & \overline{B}^{0} \end{vmatrix}$$

$$A_{CP} = \frac{f_{\overline{EP}}\overline{B^{0}}(\Delta t) \rightarrow f_{CP}) - \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})}{\Gamma(\overline{B^{0}}(\Delta t) \rightarrow f_{CP}) + \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})} \begin{bmatrix} \overline{B}^{0} \\ \overline{B}^{0}$$

標準模型では、CPの破れはCKM行列によって説明される。

Wolfenstein $\frac{1-\lambda^2/2}{\lambda} \quad \lambda \quad A\lambda^3(\rho - i\eta) \quad V_{ud} V_{ub}^* \quad V_{ud} V_{ub}^*$

SVD1を用いたCPの破れの測定結果(1)

140fb⁻¹のデータ
(2003年夏まで)
$$S = -\xi_{f_{CP}} \sin 2\phi_1 \quad \xi_{f_{CP}}$$
: CP固有値
 $\sin 2\phi_1 =$
0.733 ± 0.057(stat.) ± 0.028(sys)
 $A = \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1}$

直接的CPの破れが無いことと矛 盾していない。

SVD1を用いたCPの破れの測定結果(2)

SVD1を用いたCPの破れの測定結果(3)

B $\pi^+\pi^-$ 140fb⁻¹ (1529events, including B.G.)

SVD2での物理の展望

- 2003年秋から2004年夏までにSVD2で、約150fb⁻¹のデータが 貯まると予想される。
 - 位置分解能、位置決定効率がそれぞれ約10%程度あがる。
 - SVD2で1年で貯めたデータはSVD1で4年間貯めたデータと 同程度となる。
 - 両方のデータの和をとると、統計エラーが~1/ 2に減る。
 - ただし、バックグランドに大きく依存するが。。。
 - $-b \rightarrow ccs \sigma \sigma \sin 2\phi_1 \sigma \tau = -b \delta$, 6% $ccs \sigma \delta$.
 - $B \rightarrow \phi K_S$ でのSのエラーは30%程度に減少
 - ・中心値が変わらないとすると、Sの差は約5σに上昇。
 - $B \rightarrow \pi^+ \pi^-$ のCPの破れはSVD1で発見された。
 - 今後は直接的CPの破れを測定することが重要。
 - 中心値があまり変わらないとすると4σ程度の有意差で 検出。

まとめ

- KEKB加速器は世界最高のルミノシティー強度でBelle実 験に億単位の大量のB中間子を供給している。
- 2003年夏にSVDがアップグレードされた。
 - 放射線耐性、位置決定の精度と効率、データ処理能力の向上。
 - トリガー機能の導入。
- SVD2は2003年秋から順調にデータを貯めつつある。
 - 2004年夏のKEKBシャットダウンまでには150fb⁻¹データが貯まると見込まれている。
- SVD1は4年間順調に作動し、140fb⁻¹のデータから数々の重要な物理結果を我々に与えてくれた。
 - $b \rightarrow ccs$ モードを用いたsin2 ϕ_1 の精密測定。
 - $B \rightarrow \phi K_S$ モードでのSの測定。
 - $B \rightarrow \pi^+ \pi^-$ モードでのCPの破れの発見。
- 2004年夏までのSVD2のデータに乞う、ご期待。

backup slides

DSSD	L1~	-L3	L4		
	P(z)	N()	P(z)	N()	
size(mm)	79.2x28.4		76.4x34.9		
Strip pitch	75µm	50µm	73µm	65µm	
# of strip	1024	512	1024	512	
Strip width	50µm	10µm	55µm	12µm	

SVD2のDSSDの仕様

SVD1のDSSDの仕様

	strip pitch	read-out pitch	# of channels
r-φ	25µm	50µm	640
Z	42 μm	84µm	640

SVD1

Laver Radius	Radius	Length	Ladders	s DSSDs	Beam pipe radius: 20.0mm	
	(mm)	(mm)	per layer	per ladder	Total coverage : 23°<	
1	30.0	112.5	8	2	$\theta < 139^{\circ}$ in polar angle.	
2	45.5	168.5	10	3		
3	60.5	224.5	14	4	Total # of channels: 81920	

SVD 2

Layer	Radius (mm)	Length (mm)	Ladders per layer	DSSDs per ladder	Тс 17
1	20.0	156.5	6	2(1+1)	an
2	43.5	236.2	12	3(1+2)	(m
3	70.0	395.6	18	5(2+3)	# (
4	88.0	457.8	18	6(3+3)	

Beam pipe radius: 15.0mm Total coverage : 17°< θ < 150°in polar angle (matching with CDC) # of read-out channels: 110592

Time variation of sigma of Beam Vertex for Bhabhas

1529 candidates (801 B^0 - and 728 B^0 -tags) containing (372 ± 32) $\pi^+\pi^-$ signal events

