# The Belle Silicon Vertex Detector



and CP Violation 石野 宏和(東京工業大学) for the Belle Collaboration

2004年3月8日 科研費特定領域 第2回研究会 @つくば国際会議場エポカル

- イントロダクション
- SVD2とその性能
- 最新のCPの破れの測定結果と展望

#### Belle実験とKEKB加速器



KEKBは8GeVの電子と3.5GeVの陽電子の衝突型加速器。

最高ピークルミノシティは 120.0×10<sup>32</sup>/cm<sup>2</sup>/s (3月1日)



#### KEKB加速器の性能

continuous injection

絶えず10<sup>34</sup>/cm<sup>2</sup>/s以上の ルミノシティを維持 積分ルミノシティ 約200fb<sup>-1</sup> (2003年秋からは約50fb<sup>-1</sup>)

Integrated Luminosity (logged)



):01:27 He

~800pb-1/day

1日に約90万個のY(4S)を生成。

KEKBは世界最高輝度 を持つ加速器

#### Belle検出器



#### **Belle Collaboration**



274 authors, 45 institutions many nations



- B中間子系での時間に依存するCPの破れ を測定し、CKM行列の角度を測定する。
  - 数億個の大量のB中間子と100μm以下の精度でのB中間子の崩壊点の測定が必要。
  - 実験を遂行するためには世界最高強度を持つKEKB加速器とSVDが必要である。

## Silicon Vertex Detector (SVD)とは

Double sided Silicon Strip Detector (DSSD) をラダー構造に配置し荷電粒子の通過位置を約10μmの精度で測定。

2.84cm





#### **SVD**



ラダーを3次元的に配置し、 荷電粒子のトラックパラメー タを測定。

バーテックスフィットによりB 中間子の崩壊点を測定。

6+12+18+18 = 54 ladders



#### SVDのアップグレード

- 1999年にSVD version1 (SVD1)をインストール。
  - 2003年夏まで順調に作動。
  - 4年間の間に約1Mradの放射線照射を受け、放射線耐性の限界に達しようとしていた。
- 2003年夏にSVD version2 (SVD2)をインストール。
  - 20Mrad以上の耐性を持つ。
    - 読み出しチップであるVA1TA チップが0.35µmプロセスでつくられた。
  - ラダーが3層から4層に増加、最内層の半径が3cmから2cmへ減少、立体 角が約10%向上。
    - より高い荷電粒子検出効率とより精度良い崩壊点決定精度
  - fast shaper (75 or 300ns)とdiscriminator (TA)をVA1TAチップに実装
    - 世界初のSVDを使用したトリガーの試み。
  - データ読み出し系の改良。
    - DSPの代わりにPCをつかうことによって、約3倍以上のデータ処理速度を達成。

# SVD2ラダーの構造と組み立て



浜松フォトニクス社とメルボルン大学(オーストラリア)で組み立て。





VA1TA チップ



## VA1TAチップ

shift in

(L1 trigger)

serial

analog out



L0 trigger



5MHz

With L1 trigger, FADC

start AD conversion

VA1TA: AMS 0.35μm process, radiation hardness up to 20Mrad •VA1

- •shaping time 0.3~1.0μs
- •128 channel serial read-out with 5MHz clock

•TA

- •faster shaper (75ns or 300ns) + discriminator
- •128 wired-or out put
- •Bias voltage and currents are generated by internal DAC (in total 680bits)



#### SVD2のインストール









KEK工作センターの大久保隆治さん、小池重明さん、 佐藤伸彦さん、鈴木純一さんがSVDの構造設計と製作につい て評価されて、第4回KEK技術賞を受賞なさいました。

## ハドロンイベント



#### VA1TAチップのアンプゲインの経時変化



4年間で約1Mradの照射を受けた。

第1層目のゲインは30%減少。

#### SVD2



約4ヶ月で1層目は約40kradの照射 (積分ルミノシティは約50fb<sup>-1</sup>)。 ゲインの減少はみられていない。

#### アライメントとDSSD上の位置分解能



#### **Impact Parameter Resolution**



低運動量域で約20%以上改善

## **△z** 分解能 (MC)

#### Residual Distribution of SVD2.0



# $B \rightarrow J/\psi K_S MC$

|                     | SVD1    | SVD2    |
|---------------------|---------|---------|
| CP side             | 55.6μm  | 48.0μm  |
| Tag side            | 126.5μm | 114.7μm |
| $\Delta \mathbf{z}$ | 137.9μm | 125.1μm |

 $J/\psi K_S$ の場合、 $\Delta z$ 分解能は約10%改善。

位置決定効率 は約7%増加。

#### TAの性能



緑と黒い点はSVDのヒット位置。四角はTAによるヒット(TAヒットは128ストリップのORになっている)。

TA discriminator の閾値 分布

TAヒット情報を使ったトリガーロジックを開発中。

#### データ収集システムの性能



オキュパンシー:検出器のストリップのヒット数の割合。 ヒットしたストリップ:S/Nが4以上のストリップ。 PC12台(2.4GHz Xeon dual CPU)を使用。

PC上でsparsification(ヒット したストリップデータのみを 拾う)を行う。

処理速度は5%オキュパンシーで約1.3kHz。デットタイムは5%以下。

実際のビーム状況では 3%オキュパンシーで約 300~400Hzのトリガー 頻度。

#### CPの破れ

$$A_{CP} = \frac{f_{CP}\overline{B^0}(\Delta t) \to f_{CP}) - \Gamma(B^0(\Delta t) \to f_{CP}}{\Gamma(\overline{B^0}(\Delta t) \to f_{CP}) + \Gamma(B^0(\Delta t) \to f_{CP})} = S \sin(\Delta m_d \Delta t) + A \cos(\Delta m_d \Delta t)$$

$$\Delta t = \frac{\Delta z}{a B t}$$

S はB<sup>0</sup>とB<sup>0</sup>の混合に起因するCPの破れ

A はB<sup>0</sup>とB<sup>0</sup>の間の直接的CPの破れ

 $\beta \gamma = 0.425$ 

## 標準模型では、CPの破れはCKM行列によって説明される。

Wolfenstein 表示 
$$\begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \quad \begin{matrix} V_{ud}V_{ub}^*/2 \\ \phi_3 \end{matrix}$$



# SVD1を用いたCPの破れの測定結果(1)



140fb<sup>-1</sup> **のデータ** (2003**年夏まで**)

$$S = -\xi_{f_{CP}} \sin 2\phi_1$$
  $\xi_{f_{CP}}$ :  $CP$ **固有値**

 $\sin 2\phi_1 = 0.733 \pm 0.057 \text{(stat.)} \pm 0.028 \text{(sys)}$ 

$$A = \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1}$$

 $|\lambda| = 1.007 \pm 0.041 \text{(stat.)}|$ 

直接的CPの破れが無いことと矛盾していない。

sin24,は8%程度の精度で測定。

SVD2の性能評価、他のモード sss)との比較の良い基準。

#### **SVD1を用いた***CP***の破れの測定結果(2)**



SMではループダイアグラムのみ寄与。 新物理の兆候を検知しやすい。

$$B \phi K_S$$

$$S(=\sin 2\phi_1) = -0.96 \pm 0.50^{0.09}_{0.11}$$

b  $\cos$ で測定された $\sin 2\phi_1$ と $3.5\sigma$  離れている。

新物理の兆候?さらなる統計が必要

$$A = -0.15 \pm 0.29 \pm 0.$$

B 
$$K^{+}K^{-}K_{S}$$
  
 $S=+0.51 \pm 0.26 \pm 0.05^{0.18}_{0.00}$   
 $A=-0.17 \pm 0.16 \pm 0.04$   
B  $\eta'K_{S}$   
 $S=+0.43 \pm 0.27 \pm 0.05$   
 $A=-0.01 \pm 0.16 \pm 0.04$ 

# SVD1を用いたCPの破れの測定結果(3)



140fb<sup>-1</sup> (1529events, including B.G.)



$$A_{\pi\pi} = +0.58 \pm 0.15 \pm 0.07$$

$$S_{\pi\pi} = -1.00 \pm 0.21 \pm 0.07$$



CP の破れ: 有意差5.2σ

直接的CPの破れ:

有意差3.2σ

#### SVD2での物理の展望

- 2003年秋から2004年夏までにSVD2で、約150fb-1のデータが 貯まると予想される。
  - 位置分解能、位置決定効率がそれぞれ約10%程度あがる。
  - SVD2で1年で貯めたデータはSVD1で4年間貯めたデータと 同程度となる。
  - 両方のデータの和をとると、統計エラーが~1/ 2 に減る。
    - ただし、バックグランドに大き〈依存するが。。。
  - -b→ccsでの $sin2\phi_1$ のエラーは5,6%になる。
  - $-B \rightarrow \phi K_S$ でのSのエラーは30%程度に減少
    - 中心値が変わらないとすると、Sの差は約5σに上昇。
  - $-B \rightarrow \pi^+ \pi^-$ のCPの破れはSVD1で発見された。
    - 今後は直接的CPの破れを測定することが重要。
    - 中心値があまり変わらないとすると4σ程度の有意差で 検出。

#### まとめ

- KEKB加速器は世界最高のルミノシティー強度でBelle実験に億単位の大量のB中間子を供給している。
- 2003年夏にSVDがアップグレードされた。
  - 放射線耐性、位置決定の精度と効率、データ処理能力の向上。
  - トリガー機能の導入。
- SVD2は2003年秋から順調にデータを貯めつつある。
  - 2004年夏のKEKBシャットダウンまでには150fb<sup>-1</sup>データが貯まると見込まれている。
- SVD1は4年間順調に作動し、140fb-1のデータから数々の重要な物理結果を我々に与えてくれた。
  - $-b \rightarrow ccs$ モードを用いた $\sin 2\phi_1$ の精密測定。
  - $-B \rightarrow \phi K_S$ モードでのSの測定。
  - $-B \rightarrow \pi^+ \pi^-$ モードでのCPの破れの発見。
- 2004年夏までのSVD2のデータに乞う、ご期待。

backup slides

| DSSD           | L1~L3     |      | L4        |      |
|----------------|-----------|------|-----------|------|
|                | P(z)      | N( ) | P(z)      | N( ) |
| size(mm)       | 79.2x28.4 |      | 76.4x34.9 |      |
| Strip<br>pitch | 75µm      | 50µm | 73µm      | 65µm |
| # of strip     | 1024      | 512  | 1024      | 512  |
| Strip<br>width | 50µm      | 10µm | 55µm      | 12µm |

# SVD1のDSSDの仕様

# SVD2のDSSDの仕様

|     | strip<br>pitch | read-out<br>pitch | # of<br>channels |
|-----|----------------|-------------------|------------------|
| r-ф | <b>25</b> μm   | <b>50</b> μm      | 640              |
| Z   | <b>42</b> μm   | 84μm              | 640              |

#### SVD1

| Layer | Radius<br>(mm) | Length<br>(mm) | Ladders<br>per layer | DSSDs<br>per ladder |
|-------|----------------|----------------|----------------------|---------------------|
| 1     | 30.0           | 112.5          | 8                    | 2                   |
| 2     | 45.5           | 168.5          | 10                   | 3                   |
| 3     | 60.5           | 224.5          | 14                   | 4                   |

Beam pipe radius: 20.0mm

Total coverage: 23°<

 $\theta$  < 139°in polar angle.

Total # of channels: 81920

#### SVD 2

| Layer | Radius<br>(mm) | Length<br>(mm) | Ladders<br>per layer | DSSDs<br>per ladder |
|-------|----------------|----------------|----------------------|---------------------|
| 1     | 20.0           | 156.5          | 6                    | 2(1+1)              |
| 2     | 43.5           | 236.2          | 12                   | 3(1+2)              |
| 3     | 70.0           | 395.6          | 18                   | 5(2+3)              |
| 4     | 0.88           | 457.8          | 18                   | 6(3+3)              |

Beam pipe radius: 15.0mm

Total coverage:

 $17^{\circ} < \theta < 150^{\circ}$ in polar angle

angle (matabia)

(matching with CDC)

# of read-out channels:

110592

drho dz



#### Time variation of sigma of Beam Vertex for Bhabhas





1529 candidates (801  $B^0$ - and 728  $B^0$ -tags) containing (372  $\pm$  32)  $\pi^+\pi^-$  signal events

# History of $A_{\pi\pi}$ and $S_{\pi\pi}$









#### 140 fb<sup>-1</sup>, 152 x 10<sup>6</sup> BB pairs

| Mode                              | $N_{ m ev}$ | p                 |
|-----------------------------------|-------------|-------------------|
| $J/\psi K_S^0$                    | 1997        | $0.976 \pm 0.001$ |
| $J/\psi K_S^0(\pi^0\pi^0)$        | 288         | $0.82 \pm 0.02$   |
| $\psi(2S)(\ell^+\ell^-)K_S^0$     | 145         | $0.93 \pm 0.01$   |
| $\psi(2S)(J/\psi\pi^+\pi^-)K_S^0$ | 163         | $0.88 \pm 0.01$   |
| $\chi_{c1}(J/\psi\gamma)K_S^0$    | 101         | $0.92 \pm 0.01$   |
| $\eta_c(K_S^0K^-\pi^+)K_S^0$      | 123         | $0.72 \pm 0.03$   |
| $\eta_c(K^+K^-\pi^0)K_S^0$        | 74          | $0.70 \pm 0.04$   |
| $\eta_c(p\overline{p})K_S^0$      | 20          | $0.91 \pm 0.02$   |
| All with $\xi_f = -1$             | 2911        | $0.933 \pm 0.002$ |
| $J/\psi K^{*0}(K_S^0\pi^0)$       | 174         | $0.93 \pm 0.01$   |
| $J/\psi K_L^0$                    | 2332        | $0.60 \pm 0.03$   |

(81% CP=+1)

5417 events used in Fit

