Mar.7, 2005

Recent results on CP violation from Belle

H. Aihara University of Tokyo

Integrated Luminosity (logged)

SVD2 installed Summer 2003

The outermost (4th) layer was built with this grant.

New data set since last result $(140 + 113 fb^{-1})$

SVD upgrade: better I.P. resolution (also higher efficiency for K_s vertexing)

 $\begin{array}{rl} 1 \text{ MRad} & \rightarrow > 20 \text{ MRad} \\ 3 \text{ layers} & \rightarrow & 4 \text{ layers} \\ 23^{\circ} < \theta < 139^{\circ} & \rightarrow & 17^{\circ} < \theta < 150^{\circ} \\ R_{\text{bp}} = 2 \text{ cm} & \rightarrow & 1.5 \text{ cm} \end{array}$

impact parameter resolution (z):

152 M *BB* pairs with SVD1 123 M *BB* pairs with SVD2

BELLE

Initial goals for B Factories

Exploring CKM picture or alternative origins for *CP* violation for quark sector

$$egin{array}{rcl} B_H &=& p \left| B^0
ight
angle &-& q \left| \overline{B}^0
ight
angle \ \left| B_L
ight
angle &=& p \left| B^0
ight
angle &+& q \left| \overline{B}^0
ight
angle \end{array}$$

$$\overline{B}^{0}$$
 t W^{-} t B^{0} \overline{b} W^{+} \overline{b}

$$rac{q}{p} = \sqrt{rac{M_{12}^* - (i/2)\Gamma_{12}^*}{M_{12} - (i/2)\Gamma_{12}}} pprox \sqrt{rac{M_{12}^*}{M_{12}}} = e^{i2\phi_1} \qquad ext{(phase of } V_{td}^*V_{tb})$$

$$\frac{N_{\overline{B}{}^{0} \to f} - N_{B^{0} \to f}}{N_{\overline{B}{}^{0} \to f} + N_{B^{0} \to f}} = \mathcal{A}_{f} \cos(\Delta m \, \Delta t) + \mathcal{S}_{f} \sin(\Delta m \, \Delta t)$$

$$egin{array}{lll} \mathcal{A}_{f} &=& \displaystylerac{1-\left|\lambda
ight|^{2}}{1+\left|\lambda
ight|^{2}} & \mathcal{S}_{f} &=& \displaystylerac{2Im\,\lambda}{1+\left|\lambda
ight|^{2}} \end{array}$$

$$\lambda_f \;=\; \left(rac{q}{p}
ight) rac{A(\overline{B}{}^{\,0} \,{
ightarrow}\, f)}{A(B^0 \,{
ightarrow}\, f)} \;=\; e^{i2\phi_1}\, e^{i2\phi} \hspace{0.5cm} ext{(no penguin)}$$

Measurement of sin(2 ϕ_1)

$$egin{aligned} \lambda \ &= \ \sqrt{rac{M_{12}^{*}}{M_{12}}} \, rac{ar{\mathcal{A}}_{f}}{\mathcal{\mathcal{A}}_{f}} \ &= \ - \left(rac{V_{td}V_{tb}^{*}}{V_{td}^{*}V_{tb}}
ight) \left(rac{V_{cb}V_{cs}^{*}}{V_{cb}^{*}V_{cs}}
ight) \left(rac{V_{cd}^{*}V_{cs}}{V_{cd}^{*}V_{cs}}
ight) \ &= \ - rac{V_{td}V_{tb}^{*}V_{cb}V_{cd}^{*}}{V_{td}^{*}V_{tb}V_{cb}^{*}V_{cd}} \ &= \ - rac{-V_{cb}V_{cd}^{*}/(V_{td}^{*}V_{tb})}{-V_{cb}^{*}V_{cd}/(V_{td}V_{tb}^{*})} \ &= \ - rac{|\mathcal{M}|e^{-i\phi_{1}}}{|\mathcal{M}|e^{i\phi_{1}}} \ &= \ - e^{-2i\phi_{1}} \end{aligned}$$

 $\Rightarrow ~~ \mathcal{A}_{(J/\psi ~K^0)} = 0 ~~ \mathcal{S}_{(J/\psi ~K^0)} = \sin(2\phi_1)$

 \bar{B}^0 - B^0 oscillation:

Tree:

 \bar{K}^0 - K^0 oscillation:

Status of $\phi_1(=\beta)$

$\underbrace{\text{Measurement of sin}(2\phi_1) \text{ with } b \rightarrow ccs}_{\text{(hep-ex/0408111)}}$

140 fb⁻¹: $sin(2\phi_1) = 0.728 \pm 0.056 \pm 0.023$ $|\lambda| = 1.007 \pm 0.041 \pm 0.023$ $\Rightarrow \phi_1 = (23.3^{+2.7}_{-2.4})^{\circ}$

close to BaBar 210 fb⁻¹: $sin(2\phi_1) = 0.722 \pm 0.040 \pm 0.023$ $|\lambda| = 0.950 \pm 0.031 \pm 0.013$

 $\phi_1 = (23.5 \pm 1.6)^\circ$ (Belle+Babar)

B Measurement of $sin(2\phi_1)$ summary

Compelling evidence for direct CP violation in B^0 to $\pi^+\pi^-$ decay and model-independent constraints on $\phi_2(\alpha)$ based on **275M** BBbar pairs

$$egin{aligned} \lambda \ &= \sqrt{rac{M_{12}^{*}}{M_{12}}} \, rac{ar{\mathcal{A}}_{f}}{\mathcal{\mathcal{A}}_{f}} \ &= \ + \left(rac{V_{td} \, V_{tb}^{*}}{V_{td}^{*} \, V_{tb}}
ight) \left(rac{V_{ub} \, V_{ud}^{*}}{V_{ub}^{*} \, V_{ud}}
ight) \ &= \ rac{-V_{tb}^{*} V_{td} / (V_{ub}^{*} V_{ud})}{-V_{tb} V_{td}^{*} / (V_{ub} V_{ud}^{*})} \ &= \ rac{|\mathcal{M}'| e^{i \phi_{2}}}{|\mathcal{M}'| e^{-i \phi_{2}}} \ &= \ e^{2i \phi_{2}} \end{aligned}$$

 $\Rightarrow ~~ \mathcal{A}_{\pi\pi} = 0 ~~ \mathcal{S}_{\pi\pi} = \sin(2\phi_2)$

...if no penguin. But there is a penguin contribution, and it "breaks" these simple equalities

Tree:

Penguin:

12

Previously.....

Belle 152 M $B\overline{B}$

with 372±32 $B^0 \rightarrow \pi^+\pi^-$ events

$$S_{\pi\pi} = -1.00 \pm 0.21 \pm 0.07$$
$$A_{\pi\pi} = +0.58 \pm 0.15 \pm 0.07$$

PRL 93, 021601 (2004)

CPV with 5.2σ ,

 3.2σ evidence for DCPV

 3.2σ difference

Event Selection

• $B^0 \rightarrow \pi^+ \pi^-$ selection

Pion Identification using aerogel and dE/dx

 $\varepsilon(\pi) \cong 90\% \quad p(K \to \pi) \cong 11\%$

Kinematical Selection

 $5.271 < M_{bc} < 5.287 GeV / c^{2}$ | $\Delta E \mid < 0.064 GeV$ corresponding to ±3 σ

$$\Delta E = E_B^{CMS} - E_{beam}^{CMS}$$
$$M_{bc} = \sqrt{(E_{beam}^{CMS})^2 - (p_B^{CMS})^2}$$

Flavor Tagging

- q: flavor charge
- r: dilution factor $0 < r \le 1$

q=+1 tagged as a
$$\underline{B^0}$$
,
q=-1 tagged as a $\overline{B^0}$

r=0 no flavor discrimination, r=1 unambiguous flavor assignment

Event Selection (continuum suppression)

$B^0 \rightarrow \pi^+\pi^-$ signals from 275M BBbar events

2,820 candidates containing (666 \pm 43) $\pi^+\pi^-$ signal events

Background subtracted fit projection for all events

∆E-Mbc 2D fits to individual time intervals

New experimental situation

Significance calculation with Feldman-Cousins method

Consistency checks with Time-integrated fits

 $A_{\pi\pi} = +0.52 \pm 0.14$

consistent with time-dependent fit

Direct CP Violation is evident!

Interpretation: ϕ_2 constraint using isospin

We use the HFAG summer 2004 values for the branching ratios of $B^0 \rightarrow \pi^+\pi^-$, $\pi^0\pi^0$, $B^+ \rightarrow \pi^+\pi^0$ and direct CP asymmetry of $B^0 \rightarrow \pi^0\pi^0$.

We use the statistical treatment of J. Charles *et al.*, hep-ph/0406184

$B^0 \rightarrow \pi^0 \pi^0$ branching ratio and asymmetry

Belle measurement with 275M \overline{BB} pairs

 $Br(\pi^{0}\pi^{0}) = (2.3^{+0.4+0.2}_{-0.5-0.3}) \times 10^{-6}$ $A_{CP}(\pi^{0}\pi^{0}) = +0.44^{+0.53}_{-0.52} \pm 0.17$

hep-ex/0408101 submitted to PRL

BABAR measurement with 227M \overline{BB} pairs

$$Br(\pi^{0}\pi^{0}) = (1.17 \pm 0.32 \pm 0.10) \times 10^{-6}$$
$$A_{CP}(\pi^{0}\pi^{0}) = +0.12 \pm 0.56 \pm 0.06$$

hep-ex/0412037 submitted to PRL

First $A_{CP}(B^0 \rightarrow \pi^0 \pi^0)$ measurements in summer 2004.

Interpretation : ϕ_2 constraint with isospin

Summary of new Belle $B^0 \rightarrow \pi^+\pi^-$ CP results

• The fit yields

$$A_{\pi\pi} = +0.56 \pm 0.12 \pm 0.06$$

 $S_{\pi\pi} = -0.67 \pm 0.16 \pm 0.06$
1st error statistical,
2nd systematic

- Large direct CP violation with 4.0σ significance is observed
- The results confirm the previous Belle results.
- Isospin analysis gives at 95.4% C.L.

$$0^{\circ} < \phi_2 < 19^{\circ}$$
 & $71^{\circ} < \phi_2 < 180^{\circ}$

Outlook

Takes Super-B factories to really pin down the ϕ_2 value.

Future prospect

$sin2\phi_1$ result : 274M $B\overline{B}$ Pairs

$$J/\psi K^0$$
 only preliminary

$$sin2\phi_1 = 0.666 \pm 0.046$$

A = 0.023 ± 0.031

Before upgrade (152M $B\overline{B}$)

 $\begin{array}{l} \text{sin2}\varphi_1 = 0.696 \pm 0.061 \\ \text{A} = 0.011 \pm 0.043 \end{array}$

After upgrade (122M $B\overline{B}$)

 $\begin{aligned} sin2\varphi_1 &= 0.629 \pm 0.069 \\ A &= 0.035 \pm 0.044 \end{aligned}$

ρ