## Upsilon(5S) Physics at Belle: studying $B$ decays at an $e^{+} e^{-}$collider

Alan Schwartz
University of Cincinnati
The Fourth Workshop on
Mass Origin and Supersymmetry Physics
Tsukuba-shi, Ibaraki-ken, Japan
March 6, 2006

- introduction
- the Belle Y(5S) dataset
$\square$ inclusive $B_{s}$ production at the $\mathbf{Y}(5 S)$
$\square$ exclusive $\boldsymbol{B}_{s}$ decays: $\boldsymbol{D}_{s}^{+\left({ }^{(*)}\right)} \rho^{-}, \boldsymbol{D}_{s}^{\left.+()^{( }\right)} \pi^{-}, J / \psi \phi, J / \psi \eta$
$\square$ rarer $\boldsymbol{B}_{s}$ decays: $\boldsymbol{K}^{+} \boldsymbol{K}^{-}, \boldsymbol{D}_{s}^{\left.+()^{( }\right)} \boldsymbol{D}_{s}^{\left.+()^{*}\right)}, \phi \gamma, \gamma$


## Why study the B ?



short distance: $\Delta m$

long distance: $\Delta \Gamma$

| Meson | flavors | $\Delta m / \Gamma$ | $\Delta \Gamma / \Gamma$ | mixing observed? |
| :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{D}^{0}$ | $c \bar{u}$ | $<2.9 \%$ | $\mathbf{1 . 6} \%$ | not yet, decays too fast |
| $\boldsymbol{K}^{0}$ | $\bar{s} d$ | 0.5 | 2 | yes |
| $\boldsymbol{B}^{0}$ | $\bar{b} d$ | 0.77 | $<\mathbf{1 \%}$ | yes |
| $\boldsymbol{B}_{s}$ | $\overline{b s}$ | $>21$ | $\mathbf{0 . 2 0} \boldsymbol{l}$ | not yet, mixes too fast |

## Why study the $B_{s}$ at an $e^{+} e^{-}$machine?

There are fundamental advantages over hadronic machines (CDF/D0/LHCb):
much lower background
measure absolute branching fractions, inclusive branching fractions
excellent $\pi^{0}$ identification, and thus $\rho^{+}, \omega, \eta, \eta^{\prime}, K^{*+}, a_{1}$, etc.
$\Rightarrow$ many more final states reconstructed
$\boldsymbol{B}_{s} \boldsymbol{B}_{s}$ produced in a correlated state; gives sensitivity to mixing parameters $\boldsymbol{X}, \boldsymbol{y}$
Belle is now evaluating physics potential of $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \mathbf{Y}(5 S) \rightarrow \boldsymbol{B}_{s} \boldsymbol{B}_{s}$ running.
Some initial $B_{s}$ studies (using $50 \mathbf{~ f b}^{-1}$ dataset):

- comparing $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{-} \pi^{+}\right)$to $\mathcal{B}\left(\boldsymbol{B}_{d} \rightarrow \boldsymbol{D}^{-} \pi^{+}\right) \mathbf{x}\left(\tau_{s} / \tau_{d}\right)$ tests $\boldsymbol{S U ( 3 )}$ symmetry ( 250 events expected)
- measurement of $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(*)-} \pi^{+}\right), \mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(*)-} \rho^{+}\right), \mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}{ }^{(*)-} \boldsymbol{a}_{1}^{+}\right)$(120 events each)
- $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{J} / \psi \phi\right)(60$ events $), \mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{J} / \psi \eta\right), \mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{J} / \psi \eta^{\prime}\right)$
- comparing $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}{ }^{+} \boldsymbol{l}^{-} v\right)$ to $\mathcal{B}\left(\boldsymbol{B}_{d} \rightarrow \boldsymbol{D}^{-} \boldsymbol{l}^{+} v\right) \times\left(\tau_{s} / \tau_{d}\right)$ tests $\boldsymbol{S U ( 3 )}$ (1000 events)
- inclusive $\mathcal{B}\left(B_{s} \rightarrow X_{s}^{+} l^{-} v\right)$ (using 800 fully-reconstructed $B_{s} \rightarrow D_{s}^{-} \pi^{+} / \rho^{+}$) tests quark-hadron duality
- Measurement of $\Delta \Gamma_{s}$ using $\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(*)+} \boldsymbol{D}_{s}^{(*)-} \boldsymbol{C P}=+\mathbf{1}$ decays


## Expected rate of $B_{s}$ production

$$
\begin{aligned}
& \boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \mathbf{Y}(5 S): \sigma[\mathbf{Y}(5 S)] \sim 0.35 \mathrm{nb} \\
& \Rightarrow 3.5 \times 10^{5} \mathbf{Y}(5 S) \text { per } \mathrm{fb}^{-1} \\
& \mathbf{Y}(5 S) \rightarrow \boldsymbol{B} B, \boldsymbol{B}^{*} \boldsymbol{B}, \boldsymbol{B}^{*} \boldsymbol{B}^{*}, \boldsymbol{B} B \pi, \boldsymbol{B} \boldsymbol{B} \pi \pi, \\
& \boldsymbol{B}_{s} \boldsymbol{B}_{s}, \boldsymbol{B}_{s}{ }^{*} \boldsymbol{B}_{s}, \boldsymbol{B}_{s}^{*} \boldsymbol{B}_{s}^{*}\left(\boldsymbol{B}^{*} \rightarrow \boldsymbol{B} \gamma, \boldsymbol{B}_{s}{ }^{*} \rightarrow \boldsymbol{B}_{s} \gamma\right)
\end{aligned}
$$

CLEO in 2003 took $0.42 \mathrm{pb}^{-1}$ of data at the $Y(5 S)$.
From the $D_{s}$ yield + assuming $B\left(B_{s} \rightarrow D_{s} X\right)=0.92$ they deduce (hep-ex/0508047):

$$
\begin{gathered}
\Gamma\left(Y(5 S) \rightarrow B_{s}^{(*)} B_{s}^{(*)}\right) / \Gamma(Y(5 S) \rightarrow \text { all })=(16 \pm 6) \% \\
\Rightarrow 1.1 \times 10^{5} B_{s} \text { per fb }^{-1}
\end{gathered}
$$



To test feasibility of $\mathbf{Y}(5 S)$ running at KEKB, Belle took short engineering run in June, 2005 ( $1.9 \mathrm{fb}^{-1}$, about 4x CLEO sample)

Spectrum

| Particle | Mass, <br> MeV/c | Width, <br> $\mathrm{MeV} / \mathrm{c}^{2}$ | $\Delta \mathrm{M}$, <br> $\mathrm{MeV} / \mathrm{c}^{2}$ | $\mathrm{c} \tau$, <br> $\mu \mathrm{m}$ | $\mathbf{P}_{\mathrm{cm}}(\mathrm{BB})$, <br> $\mathrm{MeV/c}$ |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $\mathrm{Y}(5 S)$ | $10865 \pm 8$ | $110 \pm 13$ |  |  |  |
| $B+$ | $5279.0 \pm 0.5$ |  |  | 502 | 1282 |
| $B^{0}$ | $5279.4 \pm 0.5$ |  |  | 462 | 1281 |
| $B^{*}$ | $5325.0 \pm 0.6$ |  | $45.8 \pm 0.4$ |  | 1075 |
| $B_{s}$ | $5365.5 \pm 1.3$ |  |  | 438 | 851 |
| $B_{s}^{*}$ | $5416.6 \pm 3.5$ |  | $51 \pm 4$ |  | 415 |

Belle detector

Moving $\mathrm{Y}(4 S) \rightarrow \mathbf{Y}(5 S)$ : increase $E_{\text {beam }}$ by
2.7\% (same Lorentz boost of $\beta \gamma=\mathbf{0 . 4 2 5}$ ) No modification of detector/trigger needed

- SVD: vertexing (lifetime)
- CDC: tracking, $d E / d x$ for pid
- ACC: aerogel Cerenk. Counter
- TOF: pid, trigger
- ECL: $e, \gamma$ measurement
- KLM: $\mu, K_{L}$ measurement


## Y( 5S) Engineering run in June 2005

Data set: - first did energy scan at five points: $\mathrm{E}=\mathbf{1 0 . 8 2 5}, 10.845,10.865$, $10.885,10.905 \mathrm{GeV}$, about $0.030 \mathrm{fb}^{-1}$ each point

- shifted to $\mathrm{E}=10.869 \mathrm{GeV}$ (nominal peak), took $1.86 \mathrm{fb}^{-1}$ of data
- by end of run, inst. Lum. $=1.4 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (like $\mathrm{Y}(4 S)$ running)

Fox-Wolfram moment R2:

$E(\mathrm{GeV})$
$\mathrm{Y}(5 S) /$ cont $=1 / 3.5$
$\Rightarrow \sigma_{\mathrm{Y}(5) \mathrm{S})} / \sigma_{\mathrm{Y}(4) \mathrm{S}}=0.25$

## Inclusive analysis: $Y(5 S) \rightarrow D_{s} X$

## fraction of $\boldsymbol{B}_{s} \boldsymbol{B}_{s}$ events:

1) count \# of hadronic events
2) subtract continuum ( $\bar{u} \bar{u}, \overrightarrow{d d}, \bar{c} c, \overline{s s}$ ) contribution by scaling from continuum data:

$$
\begin{aligned}
N_{\text {cont }}(5 S) & =N_{\text {cont }}(E=10.519) \mathcal{L}(5 S) / \mathcal{L}(E=10.519) \quad\left(E_{\text {cont }} / E_{5 S}\right)^{2}\left(\varepsilon_{5 S} / \varepsilon_{\text {cont }}\right) \\
= & 561,000 \pm 3,000 \pm 29,000
\end{aligned}
$$

3) reconstruct $D \rightarrow \phi \pi$ decays to determine (after cont. subtraction):

$$
\mathcal{B}\left(\mathbf{Y}(5 S) \rightarrow D_{s} X\right) / 2=(22.6 \pm 1.2 \pm 2.8) \%
$$

4) calculate $f_{s}=\left(B_{s} \bar{B}_{s}\right) / b \bar{b}$ ratio via:

$$
\begin{aligned}
& \mathcal{B}\left(\mathbf{Y}(5 S) \rightarrow D_{s} X\right)=2 f_{s} \mathcal{B}\left(B_{s} \rightarrow D_{s} X\right)+2\left(1-f_{s}\right) \mathcal{B}\left(B \rightarrow D_{s} X\right) \\
& \Rightarrow f_{s}=(16.4 \pm 1.4 \pm 4.1) \%
\end{aligned}
$$

CLEO: $(16.0 \pm 2.6 \pm 5.8) \%$
must estimate:

$$
\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s} \boldsymbol{X}\right)=(92 \pm \mathbf{1 1}) \%(\text { hep- ex/0508047 CLEO })
$$

other inputs:

$$
\begin{aligned}
& \mathcal{B}\left(B \rightarrow D_{s} X\right)=(8.94 \pm 0.16 \pm 1.12) \% \quad(\text { BaBar }) \\
& \mathcal{B}\left(D_{s} \rightarrow \phi \pi^{+}\right)=(4.4 \pm 0.5) \% \quad(\text { dominant systematic })
\end{aligned}
$$



A. Schwartz

Y(5S) Physics at Belle
Mass Origins Workshop 2006

## Inclusive analysis: $Y(5 S) \rightarrow D^{0} X$

## fraction of $\boldsymbol{B}_{s} \boldsymbol{B}_{s}$ events:

1) reconstruct $D^{0} \rightarrow K^{-} \pi^{+}$decays to determine (after cont. subtraction):

$$
\mathcal{B}\left(\mathbf{Y}(5 S) \rightarrow D^{0} X\right) / 2=(53.3 \pm 2.0 \pm 2.9) \%
$$

2) calculate $f_{s}=\left(\boldsymbol{B}_{s} B_{s}\right) / b b$ ratio via:

$$
\begin{aligned}
& \mathcal{B}\left(\mathbf{Y}(\mathbf{5 S}) \rightarrow D^{0} X\right)=2 f_{s} \mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow D^{0} X\right)+2\left(1-f_{s}\right) \mathcal{B}\left(B \rightarrow D^{0} X\right) \\
& \quad \Rightarrow f_{s}=(18.7 \pm 3.6 \pm 6.7) \%
\end{aligned}
$$

must estimate:

$$
\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}^{0} \boldsymbol{X}\right)=(\mathbf{8} \pm 7) \% \quad(\text { hep- ex/0508047 CLEO })
$$

other inputs:

$$
\begin{aligned}
& \mathcal{B}\left(B \rightarrow \boldsymbol{D}^{0} \boldsymbol{X}\right)=(63.7 \pm 3.0) \% \quad(\mathrm{PDG}) \\
& \mathcal{B}\left(\boldsymbol{D}^{0} \rightarrow \boldsymbol{K}^{-} \pi^{+}\right)=(3.81 \pm 0.09) \%
\end{aligned}
$$




## fraction of $\boldsymbol{B}_{s} \boldsymbol{B}_{s}$ events:

1) reconstruct $J / \psi \rightarrow \mu^{-} \mu^{+}$decays to determine (after cont. subtraction):

$$
\mathcal{B}(\mathbf{Y}(5 S) \rightarrow J / \psi X) / 2=(1.068 \pm 0.086 \pm 0.057) \%
$$

2) assuming $f_{s}=\left(\boldsymbol{B}_{s} B_{s}\right) / b b=17 \%$, calculate $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow J / \psi X\right)$ :

$$
\begin{aligned}
& \mathcal{B}(\mathrm{Y}(5 S) \rightarrow J / \psi X)= \\
& \quad 2 f_{s} \mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow J / \psi X\right)+2\left(1-f_{s}\right) \mathcal{B}(B \rightarrow J / \psi X) \\
& \Rightarrow \quad \mathcal{B}\left(B_{s} \rightarrow J / \psi X\right)=(0.94 \pm 0.51 \pm 0.37) \%
\end{aligned}
$$



other inputs:

$$
\begin{aligned}
& \mathcal{B}(B \rightarrow J / \psi X)=(1.094 \pm 0.032) \% \quad(\mathrm{PDG}) \\
& \mathcal{B}\left(J / \psi \rightarrow \mu^{-} \mu^{+}\right)=(5.88 \pm 0.10) \%
\end{aligned}
$$

A. Schwartz

Y(5S) Physics at Belle
Mass Origins Workshop 2006
10

## Exclusive analysis: $B_{\text {reconstruction }}$

12 Search modes:
$\begin{aligned} & \text { Cabibbo } \\ & \text { favored }\left\{\begin{array}{lll}\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(*)+} \pi^{-} & \boldsymbol{D}_{s}^{*+} \rightarrow \boldsymbol{D}_{s}^{+} \boldsymbol{\gamma} & \boldsymbol{D}_{s}^{+} \rightarrow \phi \pi^{+}, \boldsymbol{K}^{* 0} \boldsymbol{K}^{+}, \boldsymbol{K}_{s} \boldsymbol{K}^{+} \\ \boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(*)+} \rho^{-} & \rho^{-} \rightarrow \pi^{-} \pi^{0} \\ \boldsymbol{B}_{s} \rightarrow \boldsymbol{J} / \psi \phi & \boldsymbol{J} / \psi \rightarrow \mu^{+} \mu^{-} \text {or } \boldsymbol{e}^{+} \boldsymbol{e}^{-}, \quad \phi \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \\ \boldsymbol{B}_{s} \rightarrow \boldsymbol{J} / \psi \eta & \eta \rightarrow \gamma \boldsymbol{\gamma} \\ \boldsymbol{b} \rightarrow s \\ \text { rare }\end{array}\left\{\begin{array}{l}\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(*)+} \boldsymbol{D}_{s}^{(*)-} \\ \boldsymbol{B}_{s} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-}\end{array}\right.\right. \\ & \boldsymbol{B}_{s} \rightarrow \phi \gamma \\ & \boldsymbol{B}_{s} \rightarrow \gamma \gamma\end{aligned}$


Selection: - $K$ identification using time-of-flight, aerogel Cerenkov counter, $d E / d x$ in central tracker

- mass windows are $2 \sigma, 2.5 \sigma, 3 \sigma$
- continuum events rejected via Fox-Wolfram $R_{2}<0.3$, 0.4
- $B_{\text {s }}$ : $|\cos \theta|<0.6-0.9$
- $D_{s}^{+}: \quad\left|\cos \theta_{\text {helicity }}\right|>0.25$
- $p_{\gamma}>50$ or $\mathbf{1 5 0 ~ M e V}$


## Exclusive analysis: $\Delta E-m$

$\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{-} \pi^{+}, \quad \boldsymbol{D}_{s}^{-} \rightarrow \phi \pi^{-}$Monte Carlo:

$$
\begin{aligned}
m_{b c} & =\sqrt{\left(E_{b e a m}^{*}\right)^{2}-\left(p_{B}^{*}\right)^{2}} \\
\Delta E & =E_{B}^{*}-E_{b e a m}^{*}
\end{aligned}
$$




$\gamma$ spectrum:
$\boldsymbol{B}_{s}$ signals are well-separated for $\boldsymbol{B}_{s} \boldsymbol{B}_{s}, \boldsymbol{B}_{s}{ }^{*} \boldsymbol{B}_{s}, \boldsymbol{B}_{s}{ }^{*} \boldsymbol{B}_{s}{ }^{*}$
Signals are $\mathbf{2 0 - 3 0 \%}$ wider than $\boldsymbol{B}_{d}$ at the $\mathbf{Y}(\mathbf{4 S})$
$p_{\gamma}$ has only small effect
A. Schwartz $\quad Y(5 S)$ Physics at Belle

Mass Origins Workshop 2006

Exclusive analysis: $\boldsymbol{B}_{s} \rightarrow D_{s}^{(3)+} \pi^{-}$




$$
\boldsymbol{D}_{s}^{+} \rightarrow \phi \pi^{+}, \boldsymbol{K}^{* 0} \boldsymbol{K}^{+}, \boldsymbol{K}_{s} \boldsymbol{K}^{+}
$$

Clear signal in $\boldsymbol{B}_{s}{ }^{*} \boldsymbol{B}_{s}{ }^{*}$ channel; one event in $\boldsymbol{B}_{s}{ }^{*} \boldsymbol{B}_{s}$, no signal in $\boldsymbol{B}_{s} \boldsymbol{B}_{s}$ channels Taking number of $B_{s}{ }^{*}$ mesons from the inclusive analysis ( $92000 \pm 7900 \pm 23500$ ) :

$$
\mathcal{B}\left(B_{s} \rightarrow \boldsymbol{D}_{s}^{+} \pi^{-}\right)=(0.65 \pm 0.21 \pm 0.19) \%
$$

consistent with CDF: $(\mathbf{0 . 4 0} \pm \mathbf{0 . 0 6} \pm \mathbf{0 . 1 3}) \%$

Exclusive analysis: $\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(3)+} \rho^{-}, \boldsymbol{B}_{s} \rightarrow J / \psi \phi / \eta$



Clear signal in $\boldsymbol{B}_{s}{ }^{*} \boldsymbol{B}_{s}{ }^{*}$ channel; no obvious signal in $\boldsymbol{B}_{s}{ }^{*} \boldsymbol{B}_{s}$ or $\boldsymbol{B}_{s} \boldsymbol{B}_{s}$ channels

Taking number of $\boldsymbol{B}_{s}$ mesons from the inclusive analysis: $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow J / \psi \phi\right)=\mathbf{1} \times \mathbf{1 0}^{-\mathbf{3}}$ somewhat smaller than CLEO observation (hep-ex/0510034)

## Exclusive analysis: sum together CF modes


$-\mathbf{0 . 0 8}<\Delta E<-\mathbf{0 . 0 2} \mathbf{~ M e V}$


$$
\begin{aligned}
M_{b c}{ }^{2} & =E_{\text {beam }}{ }^{2}-p_{B}{ }^{2} \\
& =M\left(B_{s}{ }^{\prime \prime}\right)^{2}
\end{aligned}
$$

$$
=5418 \pm 1 \pm \text { (acc. err) } \mathrm{MeV} / \mathrm{c}^{2}
$$

(neglected $\boldsymbol{p}_{\gamma}$ direction does not change $M\left(B_{s}\right)$ position)
$-\mathbf{0 . 0 8}<\Delta \boldsymbol{E}<-\mathbf{0 . 0 2} \mathbf{~ M e V}$


$$
\begin{aligned}
M_{b c}^{2} & =\left(E_{\text {beam }}-<\Delta \mathrm{E}_{\gamma}>\right)^{2}-p_{B}^{2} \\
& =M\left(B_{s}\right)^{2} \\
& =5370 \pm 1 \pm 3 \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

PDG: $M=5369.6 \pm 2.4$
CDF: $M=5366.0 \pm 0.8$
( $\boldsymbol{E}_{\gamma}$ smearing does not change $M\left(\boldsymbol{B}_{s}\right)$ position)

CP eigenstates: $\boldsymbol{B}_{s} \rightarrow D_{s}^{(\sqrt{(3)+}} \boldsymbol{D}$
$\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(3)+} \boldsymbol{D}_{s}^{(3)-}:$


Expected: ~0.5 event in each mode

$$
\begin{aligned}
& \mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{*+} \boldsymbol{D}_{s}^{*-}\right)<0.27(90 \% \mathrm{CL}) \\
& \mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{*+} \boldsymbol{D}_{s}^{-}\right)<0.13 \\
& \mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{+} \boldsymbol{D}_{s}^{-}\right)<0.071
\end{aligned}
$$

$\boldsymbol{B}_{s} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-}$:
Partner of $\mathbf{B} \rightarrow \boldsymbol{K}^{+} \pi^{-}$ penguin decay


background $\sim 0.14$ event expected signal $\sim 0.7$ event

Radiative decays: $\boldsymbol{B}_{s} \rightarrow \phi \gamma, \boldsymbol{B}_{s} \rightarrow \gamma \gamma$
$\boldsymbol{B}_{s} \rightarrow \phi \gamma:$


background $\sim 0.15$ event expected signal $\sim 0.4$ event



SM: $\mathcal{B}\left(B_{s} \rightarrow \gamma \gamma\right)=(0.5-1.0) \times 10^{-6}$
new physics can increase by 1-2 orders of magnitude PDG: $\mathcal{B}\left(B_{s} \rightarrow \gamma \gamma\right)<1.5 \times 10^{-4}$
this analysis: $\mathcal{B}\left(B_{s} \rightarrow \gamma \gamma\right)<0.56 \times 10^{-4}(90 \% \mathrm{CL})$
A. Schwartz $\quad Y(5 S)$ Physics at Belle

Mass Origins Workshop 2006

## Summary of Y(5S) at KEKB

- KEKB ran smoothly, luminosity was similar to $\mathbf{Y}(4 S)$ running (high), integr. $\mathcal{L}=\mathbf{1 . 8 6} \mathbf{f b}^{-1}$ ( $\mathbf{4} \times$ CLEO). Belle detector ran problem-free.
- We have observed a significant excess of $D_{s}^{+}$production at the $\mathbf{Y}(5 S)$. The ratio of $\boldsymbol{B}_{s}$ meson production over all $b b$ events is measured: $f_{s}=(16.4 \pm 1.4 \pm 4.1) \%$ This value is consistent with that obtained from measuring incl. $D^{0}$ production.
- We have reconstructed Cabibbo-favored (CF) "spectator" decays $\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(*)+} \pi^{-}$, $\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(3)+} \rho^{-}$, and $\boldsymbol{B}_{s} \rightarrow \boldsymbol{J} / \psi \phi / \eta$. Using the $\boldsymbol{B}_{s}^{(*)} \boldsymbol{B}_{s}^{(*)}$ yield from inclusive analysis we determine $\mathcal{B}\left(B_{s} \rightarrow D_{s}^{+} \pi^{-}\right)=(0.65 \pm 0.21 \pm 0.19) \%$.
- We combine CF modes together to determine $m\left(\boldsymbol{B}_{s}{ }^{*}\right)=5418 \pm 1 \pm$ (acc. err) $\mathrm{MeV} / \mathrm{c}^{2}$ and $m\left(B_{s}\right)=5370 \pm 1 \pm 3 \mathrm{MeV} / \mathrm{c}^{2}$. The latter agrees with CDF: $5366.0 \pm \mathbf{0 . 8} \mathbf{~ M e V} / \mathbf{c}^{2}$
- We have made the first search for rare decays $\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s}^{(*)+} \boldsymbol{D}_{s}^{(*)-}, \boldsymbol{B}_{s} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-}, \boldsymbol{B}_{s} \rightarrow \phi \gamma$, $B_{s} \rightarrow \gamma \gamma$ (all very difficult at a hadron machine). We obtain the limit $\mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \gamma \gamma\right)<\mathbf{0 . 5 6} \times 10^{-4}(\mathbf{9 0} \% \mathrm{CL})(3 \times$ lower than PDG value).

A new physics area ( $\boldsymbol{B}_{s}$ decays) can be opened up by Belle for a modest amount of running. We are now studying the physics potential of a longer $\mathbf{Y}(5 S)$ run.

