

Upsilon(5S) Physics at Belle: studying B_{c} decays at an e^+e^- collider

Alan Schwartz University of Cincinnati

The Fourth Workshop on Mass Origin and Supersymmetry Physics Tsukuba-shi, Ibaraki-ken, Japan March 6, 2006

introduction

- **the Belle** Y(5S) **dataset**
- inclusive B_{s} production at the Y(5S)
- **exclusive** B_s decays: $D_s^{+(*)}\rho^-$, $D_s^{+(*)}\pi^-$, $J/\psi \phi$, $J/\psi \eta$

a rarer B_{s} decays: $K^{+}K^{-}$, $D_{s}^{+(*)}D_{s}^{+(*)}$, $\phi\gamma$, $\gamma\gamma$

short distance: Δm

long distance: $\Delta\Gamma$

_	Meson	flavors	$\Delta m/\Gamma$	ΔΓ/Γ	mixing observed?	
	D^0	cū	< 2.9%	1.6 %	not yet, decays too fast	
	K^0	sd	0.5	2	yes	
	B^0	bd	0.77	<1%	yes	
-	\boldsymbol{B}_{s}	\overline{bs}	> 21	0.20?	not yet, mixes too fast	

A. Schwartz

Y(5S) Physics at Belle

Why study the B_{g} at an e^+e^- machine?

There are fundamental advantages over hadronic machines (CDF/D0/LHCb):

much lower background measure absolute branching fractions, inclusive branching fractions excellent π^0 identification, and thus ρ^+ , ω , η , η' , K^{*+} , a_1 , etc.

- \Rightarrow many more final states reconstructed
- $B_{s}B_{s}$ produced in a correlated state; gives sensitivity to mixing parameters x, y

Belle is now evaluating physics potential of $e^+e^- \rightarrow Y(5S) \rightarrow B_s B_s$ running. Some initial B_s studies (using 50 fb⁻¹ dataset):

- comparing $\mathcal{B}(B_s \to D_s^- \pi^+)$ to $\mathcal{B}(B_d \to D^- \pi^+) \times (\tau_s / \tau_d)$ tests *SU(3)* symmetry (250 events expected)
- measurement of $\mathcal{B}(B_s \to D_s^{(*)-} \pi^+)$, $\mathcal{B}(B_s \to D_s^{(*)-} \rho^+)$, $\mathcal{B}(B_s \to D_s^{(*)-} a_1^+)$ (120 events each)
- $\mathcal{B}(B_s \rightarrow J/\psi \phi)$ (60 events), $\mathcal{B}(B_s \rightarrow J/\psi \eta)$, $\mathcal{B}(B_s \rightarrow J/\psi \eta')$
- comparing $\mathcal{B}(B_s \rightarrow D_s^+ l^- v)$ to $\mathcal{B}(B_d \rightarrow D^- l^+ v) \ge (\tau_s / \tau_d)$ tests SU(3) (1000 events)
- inclusive $\mathcal{B}(B_s \to X_s^+ l^- v)$ (using 800 fully-reconstructed $B_s \to D_s^- \pi^+ / \rho^+$) tests quark-hadron duality
- Measurement of $\Delta \Gamma_s$ using $B_s \rightarrow D_s^{(*)+} D_s^{(*)-} CP = +1$ decays

Expected rate of B production

 $e^+e^- \rightarrow Y(5S)$: $\sigma[Y(5S)] \sim 0.35 \text{ nb}$ $\Rightarrow 3.5 \ge 10^5 Y(5S) \text{ per fb}^{-1}$

 $Y(5S) \rightarrow BB, B^*B, B^*B^*, BB\pi, BB\pi\pi, BB\pi\pi, BB_s\pi, B_sB_s, B_s^*B_s, B_s^*B_s^*, (B^* \rightarrow B\gamma, B_s^* \rightarrow B_s\gamma)$

CLEO in 2003 took 0.42 pb⁻¹ of data at the Y(5S). From the D_s yield + assuming $B(B_s \rightarrow D_s X) = 0.92$ they deduce (hep-ex/0508047):

$$\Gamma(Y(5S) \to B_s^{(*)}B_s^{(*)})/\Gamma(Y(5S) \to \text{all}) = (16 \pm 6)\%$$

 \Rightarrow 1.1 x 10⁵ B_{s} per fb⁻¹

To test feasibility of Y(5S) running at KEKB, Belle took short engineering run in June, 2005 (1.9 fb⁻¹, about 4x CLEO sample)

A. Schwartz

Y(5S) Physics at Belle

Particle	Mass, MeV/c ²	Width, MeV/c ²	ΔM , MeV/c ²	cτ, μm	P _{cm} (BB), MeV/c
Y (5 <i>S</i>)	10865 ± 8	110 ± 13			
<i>B</i> +	5279.0 ± 0.5			502	1282
B ⁰	$\textbf{5279.4} \pm \textbf{0.5}$			462	1281
<i>B</i> *	5325.0 ± 0.6		$\textbf{45.8} \pm \textbf{0.4}$		1075
B _s	5365.5 ± 1.3			438	851
B _s *	5416.6 ± 3.5		51 ± 4		415

A. Schwartz

Moving $Y(4S) \rightarrow Y(5S)$: increase E_{beam} by 2.7% (same Lorentz boost of $\beta\gamma = 0.425$) No modification of detector/trigger needed

- **SVD:** vertexing (lifetime)
- **CDC:** tracking, *dE/dx* for pid
- ACC: aerogel Cerenk. Counter
- **TOF**: pid, trigger
- **ECL:** e, γ measurement
- **KLM:** μ , K_L measurement

Y(5S) Engineering run in June 2005

- **Data set:** first did energy scan at five points: E = 10.825, 10.845, 10.865,
 - 10.885, 10.905 GeV, about 0.030 fb⁻¹ each point
 - shifted to E=10.869 GeV (nominal peak), took 1.86 fb⁻¹ of data
 - by end of run, inst. Lum. = $1.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (like Y(4S) running)

A. Schwartz

$\bigcup_{BELLE} Inclusive analysis: Y(5S) \rightarrow D_s X$

fraction of $B_{s}B_{s}$ events:

- 1) count # of hadronic events
- 2) subtract continuum (*uu*,*dd*,*cc*,*ss*) contribution by scaling from continuum data:

$$N_{\text{cont}}(5S) = N_{\text{cont}}(E=10.519) \ \text{(} \text{(} 5S) \ \text{(} \text{(} E=10.519) \ \text{(} \text{(} E_{\text{cont}} \ \text{(} E_{5S} \ \text{)}^2 \ (\text{(} \epsilon_{5S} \ \text{(} \epsilon_{\text{cont}} \ \text{)} \\ = 561,000 \pm 3,000 \pm 29,000$$

3) reconstruct $D_s \rightarrow \phi \pi$ decays to determine (after cont. subtraction):

$$\mathcal{B}(\mathbf{Y}(5S) \rightarrow D_s X) / 2 = (22.6 \pm 1.2 \pm 2.8) \%$$

4) calculate $f_s = (B_s \overline{B}_s)/b\overline{b}$ ratio via:

$$\mathcal{B}(\mathbf{Y}(5S) \rightarrow D_s X) = 2f_s \mathcal{B}(B_s \rightarrow D_s X) + 2(1 - f_s) \mathcal{B}(B \rightarrow D_s X)$$

$$\Rightarrow \quad f_s = (16.4 \pm 1.4 \pm 4.1)\%$$

CLEO:
$$(16.0 \pm 2.6 \pm 5.8)$$
%

must estimate:

 $\mathcal{B}(B_s \to D_s X) = (92 \pm 11)\%$ (hep- ex/0508047 CLEO)

other inputs:

 $\mathcal{B}(B \rightarrow D_s X) = (8.94 \pm 0.16 \pm 1.12)\% \text{ (BaBar)}$ $\mathcal{B}(D_s \rightarrow \phi \pi^+) = (4.4 \pm 0.5)\% \text{ (dominant systematic)}$

ysics at Belle Mass Origins Workshop 2006

8

$\bigcup_{BELLE} Inclusive analysis: Y(5S) \rightarrow D^0X$

fraction of $B_{s}B_{s}$ events:

1) reconstruct $D^0 \rightarrow K^- \pi^+$ decays to determine (after cont. subtraction):

 $\mathcal{B}(Y(5S) \rightarrow D^0 X) / 2 = (53.3 \pm 2.0 \pm 2.9) \%$

2) calculate $f_s = (B_s B_s)/bb$ ratio via:

$$\mathcal{B}(\mathbf{Y}(5S) \rightarrow D^0 X) = 2f_s \mathcal{B}(B_s \rightarrow D^0 X) + 2(1 - f_s) \mathcal{B}(B \rightarrow D^0 X)$$
$$\Rightarrow \qquad f_s = (18.7 \pm 3.6 \pm 6.7)\%$$

must estimate:

 $\mathcal{B}(B_s \to D^0 X) = (8 \pm 7)\%$ (hep-ex/0508047 CLEO)

other inputs:

 $\mathcal{B}(B \to D^0 X) = (63.7 \pm 3.0)\%$ (PDG) $\mathcal{B}(D^0 \to K^- \pi^+) = (3.81 \pm 0.09)\%$

A. Schwartz

Y(5S) Physics at Belle

$\bigcup_{BELLE} Inclusive analysis: Y(5S) \rightarrow J/\psi X$

fraction of $B_{s}B_{s}$ events:

1) reconstruct $J/\psi \rightarrow \mu^{-}\mu^{+}$ decays to determine (after cont. subtraction):

 $\mathcal{B}(Y(5S) \rightarrow J/\psi X) / 2 = (1.068 \pm 0.086 \pm 0.057) \%$

2) assuming
$$f_s = (B_s B_s)/bb = 17\%$$
, calculate $\mathcal{B}(B_s \rightarrow J/\psi X)$:
 $\mathcal{B}(Y(5S) \rightarrow J/\psi X) =$
 $2f_s \mathcal{B}(B_s \rightarrow J/\psi X) + 2(1-f_s) \mathcal{B}(B \rightarrow J/\psi X)$

$$\Rightarrow \quad \mathcal{B}(\boldsymbol{B}_{s} \rightarrow \boldsymbol{J}/\boldsymbol{\psi}\boldsymbol{X}) = (\boldsymbol{0.94} \pm \boldsymbol{0.51} \pm \boldsymbol{0.37})\%$$

other inputs:

 $\mathcal{B}(B \to J/\psi X) = (1.094 \pm 0.032)\%$ (PDG) $\mathcal{B}(J/\psi \to \mu^- \mu^+) = (5.88 \pm 0.10)\%$

Exclusive analysis: B reconstruction

12 Search modes: Cabibbo favored $\begin{cases} B_{s} \rightarrow D_{s}^{(*)+}\pi^{-} \quad D_{s}^{*+} \rightarrow D_{s}^{+}\gamma \quad D_{s}^{+} \rightarrow \phi\pi^{+}, K^{*0}K^{+}, K_{s}K^{+} \\ B_{s} \rightarrow D_{s}^{(*)+}\rho^{-} \quad \rho^{-} \rightarrow \pi^{-}\pi^{0} \\ B_{s} \rightarrow J/\psi \phi \quad J/\psi \rightarrow \mu^{+}\mu^{-} \text{ or } e^{+}e^{-}, \quad \phi \rightarrow K^{+}K^{-} \\ B_{s} \rightarrow J/\psi \eta \quad \eta \rightarrow \gamma\gamma \end{cases}$ hadronic events at Y(5S) $\mathcal{L} = 1.857 \text{ fb}^{-1}$ ▼ *bb* events | **561,000** $B_s \rightarrow D_s^{(*)+} D_s^{(*)-}$ $B_{s}^{(*)}B_{s}^{(*)} \text{ events } 92,000$ $\begin{array}{c} b \rightarrow s \\ rare \end{array} \qquad \left\{ \begin{array}{c} B_s \rightarrow K^+ K^- \\ B_s \rightarrow \phi \gamma \\ \end{array} \right.$

Selection:

• K identification using time-of-flight, aerogel Cerenkov counter, dE/dx in central tracker

- mass windows are 2σ, 2.5σ, 3σ
- continuum events rejected via Fox-Wolfram $R_2 < 0.3, 0.4$

B_s:
$$|\cos \theta| < 0.6 - 0.9$$

$$D_{s}^{+}: |\cos \theta_{\text{helicity}}| > 0.25$$

• $p_{y} > 50 \text{ or } 150 \text{ MeV}$

A. Schwartz Y(5S) Physics at Belle

\mathbf{S} Exclusive analysis: $\Delta E - m_{bc}$

Clear signal in $B_s^* B_s^*$ channel; one event in $B_s^* B_s^*$, no signal in $B_s B_s^*$ channels Taking number of B_s^* mesons from the inclusive analysis (92000 ± 7900 ± 23500) : $\mathcal{B}(B_s \rightarrow D_s^+ \pi^-) = (0.65 \pm 0.21 \pm 0.19)\%$

consistent with CDF: $(0.40 \pm 0.06 \pm 0.13)\%$

A. Schwartz

Y(5S) Physics at Belle

Clear signal in $B_s^* B_s^*$ channel; no obvious signal in $B_s^* B_s$ or $B_s B_s$ channels

Taking number of B_s mesons from the inclusive analysis: $\mathcal{B}(B_s \rightarrow J/\psi \phi) = 1 \times 10^{-3}$ somewhat smaller than CLEO observation (hep-ex/0510034)

14

Exclusive analysis: sum together CF modes

 $B_{c}^{*}B_{c}^{*}$ window: 5.41 < M_{bc} < 5.43 GeV/ c^{2}

 $-0.08 < \Delta E < -0.02 \text{ MeV}$

 $-0.08 < \Delta E < -0.02 \text{ MeV}$

A. Schwartz

Y(5S) Physics at Belle

Y(5S) Physics at Belle

A. Schwartz

background ~ 0.15 event expected signal ~ 0.4 event

SM: $\mathcal{B}(B_s \rightarrow \gamma \gamma) = (0.5 - 1.0) \times 10^{-6}$ new physics can increase by 1-2 orders of magnitude PDG: $\mathcal{B}(B_s \rightarrow \gamma \gamma) < 1.5 \times 10^{-4}$ this analysis: $\mathcal{B}(B_s \rightarrow \gamma \gamma) < 0.56 \times 10^{-4}$ (90% CL)

Mass Origins Workshop 2006

0.4

Summary of Y(5S) at KEKB

- KEKB ran smoothly, luminosity was similar to Y(4S) running (high), integr. L = 1.86 fb⁻¹ (4x CLEO). Belle detector ran problem-free.
- We have observed a significant excess of D_s^+ production at the Y(5S). The ratio of B_s meson production over all *bb* events is measured: $f_s = (16.4 \pm 1.4 \pm 4.1)\%$ This value is consistent with that obtained from measuring incl. D^0 production.
- We have reconstructed Cabibbo-favored (CF) "spectator" decays $B_s \rightarrow D_s^{(*)+} \pi^-$, $B_s \rightarrow D_s^{(*)+} \rho^-$, and $B_s \rightarrow J/\psi \phi/\eta$. Using the $B_s^{(*)} B_s^{(*)}$ yield from inclusive analysis we determine $\mathcal{B}(B_s \rightarrow D_s^+ \pi^-) = (0.65 \pm 0.21 \pm 0.19)\%$.
- We combine CF modes together to determine $m(B_s^*) = 5418 \pm 1 \pm (acc. err) \text{ MeV/c}^2$ and $m(B_s) = 5370 \pm 1 \pm 3 \text{ MeV/c}^2$. The latter agrees with CDF: 5366.0 ± 0.8 MeV/c²
- We have made the first search for rare decays $B_s \rightarrow D_s^{(*)+} D_s^{(*)-}$, $B_s \rightarrow K^+ K^-$, $B_s \rightarrow \phi \gamma$, $B_s \rightarrow \gamma \gamma$ (all very difficult at a hadron machine). We obtain the limit $\mathcal{B}(B_s \rightarrow \gamma \gamma) < 0.56 \times 10^{-4} (90\% \text{ CL})$ (3× lower than PDG value).

A new physics area (B_s decays) can be opened up by Belle for a modest amount of running. We are now studying the physics potential of a longer Y(5S) run.