MSSM and B physics

Jae-hyeon Park

Tohoku University

Fourth Mass Origin Workshop, Tsukuba, 8Mar2006

Based on

- P. Ko, G. Kramer, J.-h. Park, EPJC25(2002)
- G. L. Kane, P. Ko, C. Kolda, J.-h. Park, Haibin Wang, Lian-Tao Wang, PRL90(2003), PRD70(2004)
- P. Ko, A. Masiero, J.-h. Park, PRD72(2005).

CKM matrix

 Mixing matrix connecting weak interaction eigenstates and mass eigenstates of quarks.

$$\left(egin{array}{cc} d' \ s' \ b' \end{array}
ight) = \left(egin{array}{cc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \left(egin{array}{cc} d \ s \ b \ b \end{array}
ight)$$

• CKM matrix is hierarchical and has one CP phase.

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

• Unitarity condition, $V^{\dagger}V = VV^{\dagger} = \mathbf{1}$, yields unitarity triangles.

Unitarity triangle on the (ρ, η) plane

- SM fit of (ρ, η)
- In the presence of new physics, constraints on (ρ, η) coming from loop level processes such as $\varepsilon_K, \Delta m_d$, and Δm_s , may be weaker.

 γ -as-a-free-variable strategy.

• γ is not longer free even with loop level new physics due to constraints from $B \rightarrow DK$. $\gamma(DK) = (63^{+15}_{-13})^{\circ}$.

Unitarity triangle on the (ρ, η) plane

- SM fit of (ρ, η)
- In the presence of new physics, constraints on (ρ, η) coming from loop level processes such as $\varepsilon_K, \Delta m_d$, and Δm_s , may be weaker.

 γ -as-a-free-variable strategy.

• γ is not longer free even with loop level new physics due to constraints from $B \rightarrow DK$. $\gamma(DK) = (63^{+15}_{-13})^{\circ}$.

SUSY FCNC/CP problem

- Many of soft SUSY breaking parameters are complex and flavor violating, and a generic supersymmetric standard model results in huge flavor and CP violation.
- There should be a mechanism which controls FCNC and CP. This may be due to the SUSY breaking/mediation mechanism and/or flavor symmetry.
 We can get a clue to these mechanisms by studying FCNC and CP violation in supersymmetric models.
- Mass insertion approximation is a useful tool to present flavor violation through sfermions.

 $(\delta_{12}^d)_{LL}$: dimensionless transition strength from \tilde{s}_L to \tilde{d}_L .

SUSY FCNC/CP problem

- Many of soft SUSY breaking parameters are complex and flavor violating, and a generic supersymmetric standard model results in huge flavor and CP violation.
- There should be a mechanism which controls FCNC and CP. This may be due to the SUSY breaking/mediation mechanism and/or flavor symmetry.
 We can get a clue to these mechanisms by studying FCNC and CP violation in supersymmetric models.
- Mass insertion approximation is a useful tool to present flavor violation through sfermions.

 $(\delta_{12}^d)_{LL}$: dimensionless transition strength from \tilde{s}_L to \tilde{d}_L .

Weak effective Hamiltonian

$$H_{\text{eff}}^{\Delta B=1} = \sum_{p=u,c} \left[C_1^p O_1^p + C_2^p O_2^p \right] + \sum_{i=3}^6 C_i O_i + C_{7\gamma} O_{7\gamma} + C_{8g} O_{8g} + \text{h.c.}$$

Current-current operators

 $O_1^p = (\bar{p}b)_{V-A}(\bar{s}p)_{V-A}$ $O_2^p = (\bar{p}_{\alpha}b_{\beta})_{V-A}(\bar{s}_{\beta}p_{\alpha})_{V-A}$

QCD penguin operators

$$O_{3} = (\bar{s}b)_{V-A} \sum_{q} (\bar{q}q)_{V-A}$$
$$O_{4} = (\bar{s}_{\alpha}b_{\beta})_{V-A} \sum_{q} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$
$$O_{5} = (\bar{s}b)_{V-A} \sum_{q} (\bar{q}q)_{V+A}$$
$$O_{6} = (\bar{s}_{\alpha}b_{\beta})_{V-A} \sum_{q} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

MSSM and B physics

 (Chromo)magnetic penguin operators

$$O_{7\gamma} = -\frac{e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} (1+\gamma_5) F^{\mu\nu} b$$
$$O_{8g} = -\frac{g_s}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} (1+\gamma_5) G^{\mu\nu} b$$

Gluino-squark loop contributions to Wilson coefficients

Gabbiani, Gabrielli, Masiero, Silvestrini, NPB(1996) With S. Baek, J. H. Jang, P. Ko, NPB(2001)

Beware typos.

QCD penguin operators

Overview of *CP* violation in *B* system

Time dependent CP asymmetry

$$\begin{aligned} \mathscr{A}_{CP}(t) &\equiv \frac{\Gamma(\overline{B^0}(t) \to f_{CP}) - \Gamma(B^0(t) \to f_{CP})}{\Gamma(\overline{B^0}(t) \to f_{CP}) + \Gamma(B^0(t) \to f_{CP})} = -C_{f_{CP}} \cos(\Delta m_d t) + S_{f_{CP}} \sin(\Delta m_d t), \\ C_{f_{CP}} &= \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}, \quad S_{f_{CP}} = \frac{2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}, \quad \lambda_{f_{CP}} \equiv \mp e^{-2i(\beta + \theta_d)} \frac{\overline{A}(\overline{B^0} \to f_{CP})}{A(B^0 \to f_{CP})} \end{aligned}$$

• $B^0 - \overline{B^0}$ mixing $2m_B M_{12} \equiv \langle \overline{B^0} | H_{\text{eff}}^{\Delta B=2} | B^0 \rangle = \frac{1}{2} \Delta m_d e^{-i2(\beta + \theta_d)}$

Outline

$$B^0-\overline{B^0}$$
 mixing, $B \rightarrow J/\psi K_S$, $B \rightarrow X_d \gamma$ in general MSSM

2) $B_d \rightarrow \phi K_S CP$ asymmetries as a probe of SUSY

3)
$$B_d o \phi K_S \ CP$$
 asymmetry and $arepsilon' / arepsilon_K$

Outline

$B^0-\overline{B^0}$ mixing, $B o J/\psi K_S$, $B o X_d \gamma$ in general MSSM

 $B_d \rightarrow \phi K_S \ CP$ asymmetries as a probe of SUSY

3 $B_d o \phi K_S~CP$ asymmetry and $arepsilon'/arepsilon_K$

Possible SUSY effects on $b \rightarrow d$ transitions

With P. Ko, G. Kramer, EPJC(2002)

- Mass insertion approximation with $m_{\tilde{g}} = \tilde{m} = 500 \text{ GeV}$
- Scan over one of δ_{13}^d 's as well as γ .
- Constraints

$$\Delta m_d = (0.472 \pm 0.017) \text{ ps}^{-1}, \quad \sin 2\beta_{J/\psi} = 0.79 \pm 0.10,$$
$$\underline{B(B \to X_d \gamma) < 1 \times 10^{-5}}$$

Predictions

$$A_{ll} \equiv \frac{N(BB) - N(\bar{B}\bar{B})}{N(BB) + N(\bar{B}\bar{B})} \approx \operatorname{Im}\left(\frac{\Gamma_{12} \approx \Gamma_{12}^{\text{SM}}}{M_{12}^{\text{SM}} + M_{12}^{\text{SUSY}}}\right)$$
$$A_{\text{CP}}^{b \to d\gamma} \equiv \frac{\Gamma(B \to X_d \gamma) - \Gamma(\overline{B} \to \overline{X_d} \gamma)}{\Gamma(B \to X_d \gamma) + \Gamma(\overline{B} \to \overline{X_d} \gamma)}$$

• Consider two cases: Single $(\delta_{13}^d)_{LL}$ insertion, Single $(\delta_{13}^d)_{LR}$ insertion.

LL insertion

Hatched region for

 $B(B \to X_d \gamma) > 1 \times 10^{-5}.$

- A_{ll} can have sign opposite to that of SM value.
- $B \rightarrow X_d \gamma$ strongly constrains $|(\delta^d_{13})_{LL}| \lesssim 0.2$

 $\, \rightsquigarrow \, -60^\circ \lesssim \gamma \lesssim 60^\circ.$

Imposing $B(B \rightarrow X_d \gamma) > 1 \times 10^{-6}$ does not make any difference.

LL insertion

Hatched region for

 $B(B \to X_d \gamma) > 1 \times 10^{-5}.$

- A_{ll} can have sign opposite to that of SM value.
- $B \rightarrow X_d \gamma$ strongly constrains $|(\delta^d_{13})_{LL}| \lesssim 0.2$

 $\rightsquigarrow -60^\circ \lesssim \gamma \lesssim 60^\circ.$

Imposing $B(B \rightarrow X_d \gamma) > 1 \times 10^{-6}$ does not make any difference.

LR insertion

Hatched region for

 $B(B \to X_d \gamma) > 1 \times 10^{-5}.$

- Not much effect on A_{ll} .
- $B \rightarrow X_d \gamma$ even more strongly constrains $|(\delta^d_{13})_{LR}| \lesssim 10^{-2}$
 - $~ \rightsquigarrow ~ 30^\circ \lesssim \gamma \lesssim 80^\circ.$
- Nevertheless,

$$-25\% \lesssim A_{
m CP}^{b
ightarrow d\gamma} \lesssim +30\%$$

• Imposing $B(B \rightarrow X_d \gamma) > 1 \times 10^{-6}$ does not make much difference.

LR insertion

Hatched region for

 $B(B \to X_d \gamma) > 1 \times 10^{-5}.$

- Not much effect on A_{ll} .
- $B \rightarrow X_d \gamma$ even more strongly constrains $|(\delta^d_{13})_{LR}| \lesssim 10^{-2}$
 - $~ \rightsquigarrow ~ 30^\circ \lesssim \gamma \lesssim 80^\circ.$
- Nevertheless,

$$-25\% \lesssim A_{
m CP}^{b o d\gamma} \lesssim +30\%$$

• Imposing $B(B \rightarrow X_d \gamma) > 1 \times 10^{-6}$ does not make much difference.

Outline

$B^0-\overline{B^0}$ mixing, $B \rightarrow J/\psi K_S$, $B \rightarrow X_d \gamma$ in general MSSM

- 2) $B_d \rightarrow \phi K_S CP$ asymmetries as a probe of SUSY
- $\bigcirc B_d o \phi K_S \ CP$ asymmetry and $arepsilon'/arepsilon_K$

Why $B_d \rightarrow \phi K_S$?

Absence of tree level diagram in the Standard Model
 Sensitive to New Physics.

CPV measurements did not agree with SM very well

SM prediction

$$\begin{split} \lambda_{\phi K}^{\mathrm{SM}} &= -e^{-2i\beta}, \\ C_{\phi K}^{\mathrm{SM}} &= \frac{1 - |\lambda_{\phi K}^{\mathrm{SM}}|^2}{1 + |\lambda_{\phi K}^{\mathrm{SM}}|^2} = 0, \\ S_{\phi K}^{\mathrm{SM}} &= \frac{2 \operatorname{Im} \lambda_{\phi K}^{\mathrm{SM}}}{1 + |\lambda_{\phi K}^{\mathrm{SM}}|^2} = \sin 2\beta = 0.734 \pm 0.054 \end{split}$$

Measurements

	$S_{\phi K}$	$C_{\phi K}$
BaBar ¹	$+0.45\pm 0.43\pm 0.07$	$-0.38 \pm 0.37 \pm 0.12$
Belle ²	$-0.96\pm0.50^{+0.09}_{-0.11}$	$+0.15 \pm 0.29 \pm 0.07$
Average	-0.15 ± 0.33	-0.05 ± 0.24
Avg SM	-2.7σ	-0.2σ

¹T. Browder, Talk at LP03. ²Belle Collaboration, PRL91(2003)

MSSM and B physics

CPV measurements did not agree with SM very well

SM prediction

$$\begin{split} \lambda_{\phi K}^{\mathrm{SM}} &= -e^{-2i\beta}, \\ C_{\phi K}^{\mathrm{SM}} &= \frac{1 - |\lambda_{\phi K}^{\mathrm{SM}}|^2}{1 + |\lambda_{\phi K}^{\mathrm{SM}}|^2} = 0, \\ S_{\phi K}^{\mathrm{SM}} &= \frac{2 \operatorname{Im} \lambda_{\phi K}^{\mathrm{SM}}}{1 + |\lambda_{\phi K}^{\mathrm{SM}}|^2} = \sin 2\beta = 0.687 \pm 0.032 \end{split}$$

Measurements

	$S_{\phi K}$	$C_{\phi K}$
BaBar ¹	$+0.50\pm0.25^{+0.07}_{-0.04}$	$0.00 \pm 0.23 \pm 0.05$
Belle ²	$+0.44\pm 0.27\pm 0.05$	$-0.14 \pm 0.17 \pm 0.07$
Average	$+0.47\pm0.19$	-0.09 ± 0.14
Avg SM	-1.1σ	-0.6σ

¹BABAR Collaboration, PRD(2005) ²Belle Collaboration, hep-ex/0507037

MSSM and B physics

Strange-beauty squark scenario

New Physics in the decay amplitude

$$\lambda_{\phi K} \equiv -e^{-2ieta} \left[rac{\overline{A}(\overline{B^0} o \phi K_S)}{A(B^0 o \phi K_S)}
ight]$$

Gluino-squark loops

$$b \xrightarrow{\tilde{\delta}_{23}^d} s$$
 , $q = u, d, s, c, b$ + boxes

Four types of mass insertions:

$$\delta_{23}^d = (\delta_{23}^d)_{LL}, (\delta_{23}^d)_{RR}, (\delta_{23}^d)_{LR}, (\delta_{23}^d)_{RL}.$$

Numerical analysis of gluino-squark loops

With G. L. Kane, P. Ko, C. Kolda, Haibin Wang, Lian-Tao Wang, PRL(2003), PRD(2004)

- Mass insertion approximation with $m_{\tilde{g}} = \tilde{m} = 400 \text{ GeV}$
- QCD factorization for hadronic matrix elements

Beneke, Buchalla, Neubert, Sachrajda

• Scan over one of δ_{23}^d 's such that

 $2.0 \times 10^{-4} < B(B \rightarrow X_s \gamma) < 4.5 \times 10^{-4}, \quad \Delta M_s > 14.9 \text{ ps}^{-1}$

A. Stocchi, hep-ph/0010222

 $B_d \rightarrow \phi K_S \ CP$ asymmetries as a probe of SUSY

LL or *RR* for large $B_s - \overline{B}_s$ mixing

LL plots for

 $m_{\tilde{g}} = \tilde{m} = 400 \text{ GeV}.$

 (δ^d₂₃)_{LL} can not significantly lower S_{φK}.

> $S_{\phi K} \gtrsim 0.05$ for $m_{\tilde{g}} = \tilde{m} = 250 \text{ GeV}.$

- But large effects possible in B_s-B
 s mixing
- *RR* is similar to *LL* except for $B \rightarrow X_s \gamma$.

 $B_d \rightarrow \phi K_S \ CP$ asymmetries as a probe of SUSY

LL or *RR* for large $B_s - \overline{B}_s$ mixing

LL plots for

 $m_{\tilde{g}} = \tilde{m} = 400 \text{ GeV}.$

 (δ^d₂₃)_{LL} can not significantly lower S_{φK}.

> $S_{\phi K} \gtrsim 0.05$ for $m_{\tilde{g}} = \tilde{m} = 250 \text{ GeV}.$

- But large effects possible in B_s-B
 s mixing
- *RR* is similar to *LL* except for $B \rightarrow X_s \gamma$.

LR or *RL* for big change of $S_{\phi K}$

LR plots for

 $m_{\tilde{g}} = \tilde{m} = 400 \text{ GeV}.$

- $-0.6 < S_{\phi K} < 1$ for $|(\delta^d_{23})_{LR}| \sim 10^{-2}$.
- Correlations between $S_{\phi K}$ and $C_{\phi K}$, $S_{\phi K}$ and $A_{CP}^{b \to s \gamma}$.
- Hatched region for $B(B \rightarrow \phi K) > 1.6 \times 10^{-5}$.
- Not much effect on $B_s \overline{B}_s$ mixing.

Sparticle mass dependence

- Allow $\overline{|\delta_{23}^d|} < 1$ consistent with $B(B \rightarrow X_s \gamma)$. Fix $\frac{m_{\tilde{e}}^2}{\tilde{m}^2} = 1$.
- For *LL* or *RR*, SUSY effect rapidly decouples as *m* increases.
- For LR or RL, SUSY effect remains constant.

Outline

$B^0-\overline{B^0}$ mixing, $B o J/\psi K_S$, $B o X_d \gamma$ in general MSSM

 $B_d \rightarrow \phi K_S \ CP$ asymmetries as a probe of SUSY

$$B_d o \phi K_S \; CP$$
 asymmetry and $arepsilon'/arepsilon_K$

4 Summary

RR insertion is well motivated

Sizeable s_R-b_R mixing is expected in SUSY SU(5) with right-handed neutrinos.

Moroi, PLB(2000)

Also in SUSY SO(10).

Chang, Masiero, Murayama, PRD(2003)

• U(1) flavor symmetry + SUSY may lead to large $\tilde{s}_R - \tilde{b}_R$ mixing. Chua, Hou, PRL(2001) Chua Hou, Nagashima PRI (2004)

Chua, Hou, Nagashima, PRL(2004)

RR + RL double insertion greatly affects $S_{\phi K}$

Harnik, Larson, Murayama, PRD(2004)

 For large tan β, an induced *RL* insertion can give significant (chromo)magnetic contributions.

> Gabbiani, Masiero, NPB(1989) With Baek, Jang, Ko, PRD(2000)

• This mechanism was used to explain $S_{\phi K}^{\exp} < S_{\phi K}^{SM}$.

Strange quark chromoEDM

Hisano, Shimizu, PLB(2004)

- LL insertions are generically expected, e.g., from RG running.
- $(\delta_{23}^d)_{LL}$ can complete a diagram for strange quark chromoEDM.

Hadronic EDM constraints

- Correlation between strange quark CEDM \tilde{d}_s and $S_{\phi K}$ for $(\delta^d_{23})_{LL} = -0.04$.
- Lines are the upper bound on \tilde{d}_s from ¹⁹⁹Hg and neutron EDM.
- κ parameterizes uncertainty in \widetilde{O}_{8g} matrix element.
- S_{\u03c6K} strongly restricted around the SM value.

Hisano, Shimizu, PRD70(2004)

$B_d \rightarrow \eta' K_S \ CP$ asymmetry

Parity transformation results in

$$\begin{aligned} \frac{A^{\text{SUSY}}}{A^{\text{SM}}} \bigg|_{\phi K_{S}} &\simeq (0.23 + 0.04i) [(\delta^{d}_{23})_{LL} + (\delta^{d}_{23})_{RR}] + (95 + 14i) [(\delta^{d}_{23})_{LR} + (\delta^{d}_{23})_{RL}] \\ \frac{A^{\text{SUSY}}}{A^{\text{SM}}} \bigg|_{\eta' K_{S}} &\simeq (0.23 + 0.04i) [(\delta^{d}_{23})_{LL} - (\delta^{d}_{23})_{RR}] + (99 + 15i) [(\delta^{d}_{23})_{LR} - (\delta^{d}_{23})_{RL}] \end{aligned}$$

Kagan, Talk at BCP2 Khalil, Kou, PRL(2003)

Contours of $S_{\phi K}$ and $S_{\eta' K}$ on $(\operatorname{Im}(\delta_{23}^d)_{LL}, \operatorname{Im}(\delta_{23}^d)_{RR})$ plane for $\widetilde{m} = m_{\widetilde{g}} = 500 \text{ GeV},$ $\mu \tan \beta = 5 \text{ TeV}.$

Data favors LL insertion.

 But, right-handed new physics remains strangely beautiful.

Larson, Murayama, Perez, JHEP(2005)

$S_{\phi K}$ and $\varepsilon'/\varepsilon_K$

With P. Ko, A. Masiero, PRD(2005)

- Generically we expect $(\delta_{13}^d)_{LL} \sim \lambda^3 \sim 8 \times 10^{-3}$.
- $(\delta_{13}^d)_{LL}$ constitutes a diagram for $\varepsilon'/\varepsilon_K$ in $K_L \to \pi\pi$.

• Well known that $(\delta_{12}^d)_{LR} \sim 10^{-5}$ can saturate $\varepsilon' / \varepsilon_K$.

Gabbiani, Gabrielli, Masiero, Silvestrini, NPB(1 We needed $(\delta_{22}^d)_{RR} (\delta_{22}^d)_{RL} \sim 10^{-2}$ to significantly change $S_{\phi K}$.

With Kane, Ko, Kolda, Wang×2, PRD(2004)

• Large effect on $\varepsilon'/\varepsilon_K$ expected from $(\delta_{13}^d)_{LL}(\delta_{33}^d)_{LR}(\delta_{32}^d)_{RR} \sim 8 \times 10^{-5}$

$S_{\phi K}$ and $\varepsilon'/\varepsilon_K$

With P. Ko, A. Masiero, PRD(2005)

- Generically we expect $(\delta^d_{13})_{LL} \sim \lambda^3 \sim 8 \times 10^{-3}$.
- $(\delta_{13}^d)_{LL}$ constitutes a diagram for $\varepsilon'/\varepsilon_K$ in $K_L \to \pi\pi$.

• Well known that $(\delta_{12}^d)_{LR} \sim 10^{-5}$ can saturate $\varepsilon'/\varepsilon_K$.

Gabbiani, Gabrielli, Masiero, Silvestrini, NPB(We needed $(\delta_{23}^d)_{RR}(\delta_{33}^d)_{RL} \sim 10^{-2}$ to significantly change $S_{\phi K}$.

With Kane, Ko, Kolda, Wang×2, PRD(2004)

• Large effect on $\varepsilon'/\varepsilon_K$ expected from $(\delta_{13}^d)_{LL}(\delta_{33}^d)_{LR}(\delta_{32}^d)_{RR} \sim 8 \times 10^{-5}$

$S_{\phi K}$ and $\varepsilon'/\varepsilon_K$

With P. Ko, A. Masiero, PRD(2005)

- Generically we expect $(\delta^d_{13})_{LL} \sim \lambda^3 \sim 8 \times 10^{-3}$.
- $(\delta_{13}^d)_{LL}$ constitutes a diagram for $\varepsilon'/\varepsilon_K$ in $K_L \to \pi\pi$.

• Well known that $(\delta_{12}^d)_{LR} \sim 10^{-5}$ can saturate $\varepsilon' / \varepsilon_K$.

Gabbiani, Gabrielli, Masiero, Silvestrini, NPB(1996) • We needed $(\delta_{23}^d)_{RR}(\delta_{33}^d)_{RL} \sim 10^{-2}$ to significantly change $S_{\phi K}$.

With Kane, Ko, Kolda, Wang×2, PRD(2004)

• Large effect on $\varepsilon'/\varepsilon_K$ expected from $(\delta_{13}^d)_{LL}(\delta_{33}^d)_{LR}(\delta_{32}^d)_{RR} \sim 8 \times 10^{-5}$.

Numerical analysis

• $\Delta S = 1$ effective Hamiltonian

$$O_{8g} = -\frac{g_s}{8\pi^2} m_s \overline{d} \,\sigma_{\mu\nu} (1+\gamma_5) G^{\mu\nu} \,s$$

$$C_{8g} = \frac{\pi \alpha_s}{\tilde{m}^2} \frac{m_{\tilde{g}}}{m_s} \left[\frac{1}{6} N_1(x) + \frac{3}{2} N_2(x) \right] (\delta^d_{13})_{LL} (\delta^d_{33})_{LR} (\delta^d_{32})_{RR}$$

• Fix
$$(\delta_{13}^d)_{LL} = 8 \times 10^{-3} \times e^{-2.7i}, \quad \widetilde{m} = m_{\tilde{g}} = 500 \text{ GeV}.$$

Scan over

$$-1 \leq \operatorname{Re}(\delta_{23}^d)_{RR}, \ \operatorname{Im}(\delta_{23}^d)_{RR} \leq 1$$

imposing

$$2.0 \times 10^{-4} \le B(B \to X_s \gamma) \le 4.5 \times 10^{-4},$$

 $\Delta M_s \ge 14.9 \text{ ps}^{-1}.$

Result for $\mu \tan \beta = 5$ TeV

Correlation between $S_{\phi K}$ and $\varepsilon'/\varepsilon_K$. 0.5 S^{exp} S ∳K 0 -0.5 $(\epsilon'/\epsilon_K)^{exp}$ -1 -100 -50 0 50 100 $\epsilon'/\epsilon_{\rm K}$ (10⁻⁴)

Result for $\mu \tan \beta = 5$ TeV

100

- Correlation between $S_{\phi K}$ and $\varepsilon'/\varepsilon_K$.
- $0.25 < S_{\phi K} < 1$ for $\varepsilon' / \varepsilon_K = (16.7 \pm 2.6) \times 10^{-4}$. PDG 200
 - $B(B \rightarrow X_s \gamma)$ constraint

- Correlation between $S_{\phi K}$ and $\varepsilon'/\varepsilon_K$.
- $0.25 < S_{\phi K} < 1$ for $\varepsilon' / \varepsilon_K = (16.7 \pm 2.6) \times 10^{-4}$.

- Correlation between $S_{\phi K}$ and $\varepsilon'/\varepsilon_K$.
- $0.25 < S_{\phi K} < 1$ for $\varepsilon' / \varepsilon_K = (16.7 \pm 2.6) \times 10^{-4}$. PDG 200

Result for $\mu \tan \beta = 5$ TeV

- Correlation between $S_{\phi K}$ and $\varepsilon'/\varepsilon_K$.
- $0.25 < S_{\phi K} < 1$ for $\varepsilon' / \varepsilon_K = (16.7 \pm 2.6) \times 10^{-4}$. PDG 200

 ΔM_s constraint

- Correlation between $S_{\phi K}$ and $\varepsilon' / \varepsilon_K$.
- $0.25 < S_{\phi K} < 1$ for $\varepsilon' / \varepsilon_K = (16.7 \pm 2.6) \times 10^{-4}$.

Result for $\mu \tan \beta = 5$ TeV

- Correlation between $S_{\phi K}$ and $\varepsilon' / \varepsilon_K$.
- $0.25 < S_{\phi K} < 1$ for $\varepsilon' / \varepsilon_K = (16.7 \pm 2.6) \times 10^{-4}$.

Hadronic uncertainties

Result for $\mu \tan \beta = 5$ TeV

- Correlation between $S_{\phi K}$ and $\varepsilon' / \varepsilon_K$.
- $0.25 < S_{\phi K} < 1$ for $\varepsilon' / \varepsilon_K = (16.7 \pm 2.6) \times 10^{-4}$.

Hadronic uncertainties

Result for $\mu \tan \beta = 5$ TeV

- Correlation between $S_{\phi K}$ and $\varepsilon'/\varepsilon_K$.
- $0.25 < S_{\phi K} < 1$ for $\epsilon'/\epsilon_K = (16.7 \pm 2.6) \times 10^{-4}.$ PDG 2004

Hadronic uncertainties

Result for $\mu \tan \beta = 5$ TeV

- Correlation between $S_{\phi K}$ and $\varepsilon' / \varepsilon_K$.
- $0.25 < S_{\phi K} < 1$ for $\varepsilon' / \varepsilon_K = (16.7 \pm 2.6) \times 10^{-4}$. PDG 2004

Old Belle data excludes this scenario

hep-ex/0207098

Result for $\mu \tan \beta = 5$ TeV

- Correlation between $S_{\phi K}$ and $\varepsilon' / \varepsilon_K$.
- $0.25 < S_{\phi K} < 1$ for $\varepsilon' / \varepsilon_K = (16.7 \pm 2.6) \times 10^{-4}$. PDG 2004

For $S_{\eta'K}$, do $(\varepsilon'/\varepsilon_K)_{SUSY} \rightarrow -(\varepsilon'/\varepsilon_K)_{SUSY}$

Outline

$B^0-\overline{B^0}$ mixing, $B \rightarrow J/\psi K_S$, $B \rightarrow X_d \gamma$ in general MSSM

 $B_d
ightarrow \phi K_S \ CP$ asymmetries as a probe of SUSY

3 $B_d o \phi K_S \ CP$ asymmetry and $arepsilon'/arepsilon_K$

- $B \rightarrow X_d \gamma$ strongly constrains $(\delta_{13}^d)_{LL}$ and $(\delta_{13}^d)_{LR}$. Still, its direct *CP* asymmetry can be very different from the SM value.
- $S_{\phi K}$ is more sensitive to $(\delta_{23}^d)_{LR}$ or $(\delta_{23}^d)_{RL}$ than $(\delta_{23}^d)_{LL}$ or $(\delta_{23}^d)_{RR}$. $(\delta_{23}^d)_{LL}$ or $(\delta_{23}^d)_{RR}$ can lead to large $B_s - \overline{B}_s$ mixing.
- CPV in b → s transitions such as S_{φK} can be related to ε'/ε_K in an RR mixing scenario.

An example setup

- SU(5) GUT + right-handed neutrinos.
- Seesaw mechanism.
- Universal boundary conditions at M_{*}.
- Neutrino mass spectrum with normal hierarchy.
- Hierarchical neutrino Yukawa coupling eigenvalues.
 - \rightarrow Small $(\delta_{12}^d)_{RR}$, $(\delta_{13}^d)_{RR}$.
 - \rightarrow Clear correlation between $\varepsilon'/\varepsilon_K$ and $S_{\phi K}$.
- M_N and Y_V diagonalized simultaneously.
- (Moderately) high $\tan \beta$.

Summary

Radiative generation of sflavor mixing

Left-handed squark mixings

$$\widetilde{u}_{k}\left(\begin{array}{c} & & \\ &$$

Right-handed down squark mixings

$$\widetilde{M}_{k}\left(\begin{array}{c} & & \\ &$$

Summary

Result for $\mu \tan \beta = 1$ TeV

- Correlation between S_{φK} and ε'/ε_K
- $0.5 < S_{\phi K} < 1$ for $\varepsilon' / \varepsilon_K = (16.7 \pm 2.6) \times 10^{-4}.$

PDG 2004

\mathcal{E}_K

- Box diagrams with triple insertions of $(\delta_{13}^d)_{LL}(\delta_{33}^d)_{LR}(\delta_{32}^d)_{RR} \equiv (\delta_{12}^d)_{LR}^{\text{eff}}$ may contribute to ε_K .
- $B(B \rightarrow X_s \gamma)$ constrains

 $|(\delta_{12}^d)_{LR}^{\text{eff}}| \lesssim 2 \times 10^{-4}.$

• $|(\varepsilon'/\varepsilon_K)_{\rm SUSY}| < |(\varepsilon'/\varepsilon_K)_{\rm exp}|$ implies

 $|\mathrm{Im}(\delta_{12}^d)_{LR}^{\mathrm{eff}}| \lesssim 2 \times 10^{-5}.$

Gabbiani, Gabrielli, Masiero, Silvestrini, NPB(1996)

Then,

$$\sqrt{\left|\mathrm{Im}[(\delta_{12}^d)_{LR}^{\mathrm{eff}}]^2\right|} \lesssim 6 \times 10^{-5},$$

As a consequence,

$$|(\varepsilon_K)_{\mathrm{SUSY}}| \lesssim \frac{1}{30} |(\varepsilon_K)_{\mathrm{exp}}|$$

• ε_K is always safe if $\varepsilon'/\varepsilon_K$ constraint is satisfied.

$au ightarrow \mu \gamma$

 \widetilde{N}_k

 \tilde{l}_i

• $\overline{5} = \{\overline{D}, \widehat{\Theta}_L^{\dagger}L\} \rightarrow$

Left-handed slepton mixing is related to right-handed sdown mixing

$$\sim (m_{\tilde{l}}^2)_{ij} \simeq -\frac{1}{8\pi^2} y_{\nu_k}^2 [V_L]_{ki} [V_L^*]_{kj} (3m_0^2 + A^2) \log \frac{M_*}{M_{N_k}}$$

$$\sim (m_{\tilde{d}}^2)_{ij}$$

If we impose

$$B(\tau^{\pm} \to \mu^{\pm} \gamma) < 6.8 \times 10^{-8},$$

BABAR Collaboration, hep-ex/0502032

 $|(\delta_{23}^d)_{RR}| \lesssim 0.03$ for $\tan \beta = 10$ and $Y_D = Y_E^T$.

Ciuchini, Masiero, Silvestrini, Vempati, Vives, PRL(2004)

- \rightarrow SUSY effect becomes small.
- Not much difference even if we relax $Y_D = Y_E^T$ to account for $m_e/m_d \neq m_\mu/m_s$.

• Note $(\varepsilon'/\varepsilon_K)$ – $S_{\phi K}$ correlation is not specific to GUT.