

Top Mass Measurement at the Tevatron

Koji Sato (Univ. of Tsukuba) for CDF and D0 Collaborations

HEP2005 Europhysics Conference

Lisboa, Portugal, June 22, 2005

Top Quark Mass - Introduction

- Top mass is a fundamental parameter of the Standard Model.
- Mass measurements
 of top and W constrain 2
 the Higgs mass.

• Tevatron Run I average : $m_{top} = 178.0 \pm 2.7 \pm 3.0 \text{ GeV}/c^2$

 $\rightarrow m_{higgs} < 260 \text{ GeV/c}^2 (95\%)$

m_{top} ~ EWSB scale.
 →Special role of top?

Tevatron Run II

- $p \overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.
- Peak luminosity >~ 1.2×10^{32} cm² s⁻¹.
- ~900 pb⁻¹ of data already acquired by CDF and D0.
- Current analyses use 300 – 400 pb⁻¹.
- Direct study on top is only possible at Tevatron!

CDF and D0 Detectors

Both multi-purpose detector

- with: Tracking in magnetic field.
 - Precision tracking with silicon.
 - Calorimeters.
 - Muon chambers.

CDF

Top Quark Production and Decay

15%

~100%

q

85%

- We use pair creation events to measure m_{top}. g
- Top decays before hadronization.

 τ_{top} =0.4x10⁻²⁴ s < 1/ Λ_{QCD} ~10⁻²³ s.

 $Br(t\rightarrow Wb) \sim 100\%$.

Final state :

Mode	Br.(%)	
dilepton	5%	Clean but few signal. Two v 's in final state.
lepton+jets	30%	One v in final state. Manageable bkgd.
all hadronic	44%	Large background.
τ + Χ	21%	τ -ID is challenging.

Event Selection

L+jets

- > 1 lepton (e/ μ)
- ► **E**
- ➤ 4 jets (2 b-jets)
- Special cut on for 0tag event (CDF:hard cut on E_T^{4thjet})
- Secondary vertex *b*-tagging.

Typical CDF event rate and S/B

Dilepton

- ➢ 2lepton (e/µ)
- ▷ **½**_T
- 2 jets (2 *b*-jets)
- No *b*-tagging

		L+jets	Dilepton	
	0tag	1tag	2tag	
Nevt (320pb ⁻¹)	40	40 82		33
S:B	<1:1	3:1	10:1	2:1
# Parton-jet assign.	12	6	2	2

B-tagging helps reject wrong assignments besides reduces background.

Measurement Methods

Template Method

- Reconstruct event-byevent M_{top}.
- Describe dependence of M_{top} distribution on true top mass m_{top} using MC — Templates.
- Likelihood fit looks for m_{top} that describes data M_{top} distribution best (template fit).
- Less assumptions /
 robust measurement.

Matrix Element Method

- Calculate likelihood (probability) for m_{top} in each event by Matrix Element calculation.
- Multiply the likelihood over the candidate events.
- m_{top} determination by the joint likelihood maximum.
- Better statistical
 precision expected w/
 using more info.

All methods in all channels are well validated by a blind sample.

CDF L+jets Template Method (1)

Minimize χ^2 to reconstruct event-by-event top mass.

Fluctuate particle momenta according to detector resolution.

- 2 jets from W decay / 2 b-jets.
 →12 jet-parton assignments.
- B-tagging helps reject wrong assignments besides reduces background.

Subdivide candidate events into 0, 1, 2 tag.

 Choose assignment with smallest χ².

CDF L+jets Template Method (2)

Largest uncertainty ← Jet Energy Scale (JES)

Better understanding of JES Minimize JES uncertainty

In situ JES calibration using $W \rightarrow jj$ in t events.

 $\rm M_{top}$ and hadronic W invariant mass distributions are parametrized as functions of true top mass and Jet Energy Scale (JES) using Monte Carlo samples.

CDF L+jets Template Method (3)

Likelihood fit looks for top mass, JES and background fraction that describes the data M_{top} distribution best (template fit).

CDF L+jets Template Method (4)

- Future Projection -

- •Total uncertainty of $\Delta m_{top} \sim 2 \text{ GeV/c}^2$ in the end of CDF Run II.
- Conservative projection assuming only stat. and JES will improve.
 - \rightarrow We will do better!

(I will discuss later).

CDF L+jets Dynamical Likelihood Method (1)

Calculate likelihood as a function of m_{top} according to Matrix Element for each event.

Sum over jet-parton combination.

CDF L+jets Dynamical LikelihoodMethod (2)L = 318 pb⁻¹

- 63 candidates with exact 4 jets (≥ 1 jet *b*-tagged).
- Signal fraction ~ 85.5%.
 to reduce impact of gluon radiation events

 $M_{top} = 173.8 + 2.6/-2.4(stat) \pm 3.2(syst) \text{ GeV}/c^2$

D0 L+jets Matrix Element Method (1)

- Calculate probability density for m_{top}.
- Matrix Element for background included.
- In situ calibration of JES.

D0 L+jets Matrix Element Method (2)

- 150 candidates w/ exactly 4 jets (w/o b-tagging).
- Signal fraction ~ 36.4%.

 $M_{top} = 169.5 \pm 4.4(stat+JES) + 1.7/-1.6(syst) GeV/c^2$

- Scan (x_1, x_2) . •
- Pick M_{top} at maximum weight.
- Template fit (w/ 13 candidates).

 m_{top} = 155 +14/-13 (stat) ± 7 (syst) GeV/ c^2

120

140

160

180

200

220

top mass (GeV)

CDF Dilepton Matrix Element Method

- Calculate per-event differential cross section due to LO Matrix Element.
- Background ME is also considered to reduce the impact of background contamination.
- Calculates probability vs m_{top} for each event.

 $L = 340 \text{ pb}^{-1}$

 $M_{top} = 165.3 \pm 6.3 \text{ (stat)} \pm 3.6 \text{ (syst)} \text{ GeV}/c^2$

Summary of Measurements

Combination of Measurements

Only best analysis from each decay mode, each experiment.

Correlation :

- uncorrelated
 - ▹ stat.
 - > fit method
 - ▹ in situ JES
- •100% w/i exp (same period) > JES due to calorimeter
- •100% w/i channel
 - » bkgd. model
- •100% w/i all
 - > JES due to fragmentation,
 - » signal model
 - » MC generator

Future Improvement

Combined Result: GeV/c² Result 172.7 1.7 Stat. 2.0 JES Sig. Model 0.9 0.9 Bkgd. Model 0.3 Multi-Interaction Fit Method 0.3 **MC** Generator 0.2 Total Syst. 2.4 **Total Error** 2.9

- Basic improvement by $\sim 1/\sqrt{\mathcal{L}}$
 - \mathcal{L} ~1fb⁻¹ in next Winter.
 - Further improvement on JES by direct *b*-jet JES calibration by Z → bb events. Current *b*-jet JES taken same as generic jet + additional uncertainty according to LEP/SLD measurements.
 Sig./Bkgd. Modeling (ISR/FSR/Q² dependence etc.) Can be improved by using our own data.
 Measurement in All Hadronic mode is coming soon.
- Syst. of L_{XY} method is highly uncorrelated w/ other analyses.

New ElectroWeak Fit

ElectroWeak fit is under update w/ new combined m_{top}.

w/ previous Preliminary CDF Run II + D0 Run I Combined : m_{top}=174.3 ±2.0 (stat) ±2.8 (syst) GeV/*c*²

Summary

CDF L+Jets Template Method is the best single measurement :

 m_{top} =173.5 +4.1/-4.0 GeV/c² and will achieve Δm_{top} <~2 GeV/c² in Run II.

• Preliminary combination of CDF and D0 :

 $m_{top}\text{=}172.7\pm2.9~\text{GeV/}c^2$.

(Run I average : $178.0 \pm 4.3 \text{ GeV}/c^2$)

From previous preliminary world ave. m_{top} =174.3 ± 3.4 GeV/c²

- → m_{higgs} =98 +52/-36 GeV/c², m_{higgs} <206 GeV/c² (95%).
- → This will be updated shortly!
- Next Winter with $\sim 1 \text{ fb}^{-1}$.
 - Improvement of dominant uncertainties better than by $\sim 1/\sqrt{L}$.

- D0 Run II dilepton and All Hadronic channel from CDF/D0 will be included in combined measurement.

Backup

D0 L+jets Template Method

- Event-by-event M_{top} by χ^2 fit.
- Use 69 candidate events with ≥ 1 *b*-tagged jet.

CDF L+jets Matrix Element Method (1)

Similar to D0 L+jets ME, but does not include JES in probability definition.

$$P_{t\bar{t}}(x;m_t) = \frac{1}{\sigma_{tot}} \int d\sigma_{t\bar{t}}(y;m_t) dq_1 dq_2 f(q_1) f(q_2) W(x,y)$$

 $x \equiv$ measured quantities, $y \equiv$ parton level

 $d\sigma = |\mathcal{M}|^2 d\Phi$ LO qqbar matrix element from Mahlon & Parke $f(q_1)f(q_2)$ Structure functions, $(q_i \equiv \text{momentum fraction})$ W(x, y)Transfer functions (Map measured quantities

Transfer functions (Map measured quantities into parton level quantities).

$$L(m_t) = \prod_{i=1}^{N} c_1 \frac{P_{t\bar{t}}(x_i; m_t)}{\langle Acc(x) \rangle_{t\bar{t}}(m_t)} + (1 - c_1) \frac{P_{Back}(x_i)}{\langle Acc(x) \rangle_{Back}}$$

CDF L+jets Matrix ElementMethod (2)L = 318 pb⁻¹

63 candidates with <u>exact 4</u> jets (≥ 1 jet *b*-tagged).

to reduce impact of gluon radiation events

 $m_{top} = 172.0 \pm 2.6 \text{ (stat)} \pm 3.3 \text{ (syst)} \text{ GeV/c}^2$

Dilepton Template Methods

With 2 v's, dilepton decay of tt is an under-constraint system even supposing pole mass of W.

• D0 matrix weighting

- CDF ν weighting
- \bullet CDF ϕ of ν

• CDF $P_{7}(tt)$

How do we measure top mass?

Make an assumption.

•
$$(x_1, x_2), (\eta_{v1}, \eta_{v2}), (\phi_{v1}, \phi_{v2}), P_z(tt), etc., ...$$

Calculate probability for M_{top}.

Scan the assumed variable due to Monte Carlo distributions.

Calculate the most probable M_{top} for each event.

Template fit.

CDF Dilepton Neutrino Weighting Method

CDF Run II Preliminary (358.6 pb⁻¹)

- Assume pseudo-rapidity of 2 v's and M_{top} .
- Solve the 4-vector of v's due to (E,p) conservation.
- Calculate the probability of measuring observed ₽_T.
- Scan over assumed variables.
 - \rightarrow probability of M_{top}.
- Pick the most probable value of M_{top} for the event.
 → Template fit.

Likelihood vs top mass ັບ10 **795** Data (45 evts) In(L Events/(10 – Signal + Bkgd Bkgd only 135 150 165 180 195 M. (GeV/c²) 120 200 220 240 260 140 160 180 100 280 Reconstructed Mass (GeV/c²) $L = 359 \text{ pb}^{-1}$

 $m_{top} = 170.6 + 7.1/-6.6 \text{ (stat)} \pm 4.4 \text{ (syst)} \text{ GeV}/c^2$

CDF Dilepton P_z(t\bar{t}) Method

- By assuming Pz of tt system, momenta of the 6 final particles can be calculated from the observables.
- Calculate the invariant mass of top.
- Scan over assumed variables.
 - \rightarrow probability of M_{top}.
- Pick the most probable value of M_{top} for the event.
 → Template fit.

£ = 340 pb⁻¹

 $m_{top} = 170.2 + 7.8 / -7.2 \text{ (stat)} \pm 3.8 \text{ (syst)} \text{ GeV}/c^2$

CDF Dilepton ϕ **of** ν **Method**

$$\chi^{2} = \sum_{i=l, jets} \frac{(P_{T}^{i, fit} - P_{T}^{i, meas.})^{2}}{\sigma_{i}^{2}} + \sum_{j=x, y} \frac{(UE_{j}^{j, fit} - UE_{j}^{j, meas.})^{2}}{\sigma_{j}^{2}} + \frac{(M_{l_{1}v_{1}} - M_{W})^{2}}{\Gamma_{W}} + \frac{(M_{l_{2}v_{2}} - M_{W})^{2}}{\Gamma_{top}} + \frac{(M_{l_{1}v_{1}b_{1}} - M_{top})^{2}}{\Gamma_{top}} + \frac{(M_{l_{2}v_{2}b_{2}} - M_{top})^{2}}{\Gamma_{top}}$$

- Assume (ϕ_{v1}, ϕ_{v2}) .
- Calculate M_{top} by χ^2 fit.
- Scan over assumed variables.
 - \rightarrow probability of M_{top}.
- Pick the most probable value of M_{top} for the event.

 \rightarrow Template fit.

 $m_{top} = 169.8 + 9.2 - 9.3 \text{ (stat)} \pm 3.8 \text{ (syst)} \text{ GeV}/c^2$

New Preliminary World Average

Combination of the best analysis from each decay mode, each experiment. Correlation :

			Run-I published					Run-II preliminary			
Split into 2 to			CDF			DØ		CDF			DØ
isolate "in situ"			all-j	l+j	di-l	l+j	di-l	(l+j) _i	$(l+j)_e$	di-l	l+j
JES systematics	CDF-I	all-j	1.00								
from other JES	CDF-I	l+j	0.32	1.00							
	CDF-I	di-l	0.19	0.29	1.00						
	DØ-I	l+j	0.14	0.26	0.15	1.00					
	DØ-I	di-l	0.07	0.11	0.08	0.16	1.00				
	CDF-II	$(l+j)_i$	0.04	0.12	0.06	0.10	0.03	1.00			
	CDF-II	$(l+j)_e$	0.35	0.54	0.29	0.29	0.11	0.45	1.00		
	CDF-II	di-l	0.19	0.28	0.18	0.17	0.10	0.06	0.30	1.00	
	DØ-II	l+j	0.02	0.07	0.03	0.07	0.02	0.07	0.08	0.03	1.00

m_{top}=172.7 ±1.7 (stat) ±2.4 (syst) GeV/*c*²

Trigger :

 2 SVT track + 2 10GeV clusters.

Offline Cuts :

- N==2 jets w/ E_T>20GeV, |η|<1.5 (JetClu cone 0.7).
- Both jets are required to have secondary vertex tag.
- Δφ(j1,j2)>3.0.
- $E_T^{3rd-jet} < 10 GeV.$

