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A B S T R A C T

The planned High Luminosity Large Hadron Collider is being designed to maximise the physics potential
of the LHC with 10 years of operation at instantaneous luminosities of 7.5 × 1034 cm−2s−1. A consequence of
this increased luminosity is the expected radiation damage requiring the tracking detectors to withstand hadron
fluence to over 1 × 1015 1 MeV neutron equivalent per cm2 in the ATLAS Strips system. Fast readout electronics,
deploying 130 nm CMOS front-end electronics are glued on top of a silicon sensor to make a module. The
radiation hard n-in-p micro-strip sensors used have been developed by the ATLAS ITk Strip Sensor collaboration
and produced by Hamamatsu Photonics. A series of tests were performed at the DESY-II test beam facility to
investigate the detailed performance of a strip module with both 2.5 cm and 5 cm length strips before irradiation.
The DURANTA telescope was used to obtain a pointing resolution of 2 μm, with an additional pixel layer installed
to improve timing resolution to ∼25 ns. Results show that prior to irradiation a wide range of thresholds (0.5–2.0
fC) meet the requirements of a noise occupancy less than 1 × 10−3 and a hit efficiency greater than 99%.

1. Introduction

1.1. ATLAS upgrade for HL-LHC

The High Luminosity Large Hadron Collider (HL-LHC) will operate at
an ultimate peak instantaneous luminosity of 7.5 × 1034 cm−2 s−1 which
corresponds to approximately 200 inelastic proton–proton collisions per
beam crossing (pile-up) [1]. It will be operational for more than 10 years
and in that time ATLAS aims for a total data set of 4000 fb−1. To operate
at the higher data rates, withstand the radiation levels, and maintain low
occupancy in the high pile-up environment, the current ATLAS Inner
Detector (ID) [2] will be replaced by a new Inner Tracker (ITk). The
ITk will be an all-silicon tracking system that consists of a pixel detector
at small radius close to the beam line and a large area strip tracker
surrounding it.

1.2. ITK strips system

The ITk strips system is composed of modules [3]. The strip modules
are single-sided with the hybrid circuits carrying the front-end micro-
electronic ASICs glued to the sensor surface. Modules are sandwiched on
both sides of low mass carbon-fibre support structures with embedded
bi-phase CO2 cooling. Each module consists of multiple rows of strips
with a pitch of 74.5 μm in the central (barrel) region, and ranging from
69 μm to 85 μm in the forward (end-cap) regions. The local support
structures for the barrels are staves with 14 modules on each side while
the end-cap discs are built from petals with 9 modules of different types
per side. For the central barrel region of the strips system, the strips on
the inner two cylinders are 24.1 mm long (short-strips) and those on
the outer two cylinders are 48.2 mm long (long-strips). The short-strip
barrel modules contain two hybrids, each with ten ABC read-out ASICs,
whereas the long-strip modules contain one hybrid with ten ABC ASICs.

1.3. Motivation for testing

It is important to understand the performance of the strip modules
before irradiation, with the most critical parameters being the Equiv-
alent Noise Charge (ENC) in electrons, the gain, the collected charge,
the hit efficiency, and the noise occupancy. In addition to standard lab
tests, the characterisation of a module operated at a particle test beam
is then a vital tool for the evaluation of the module and its associated
components.

2. Setup

2.1. Devices under test

To improve the understanding of modules operating under a series
of different conditions, 2 devices were examined at test beam. The

first device (LS4) was a barrel short strip sensor connected to a barrel
hybrid populated with 10 ABC130 (130 nm prototype) chips [4]. The
sensor used was an ATLAS012 300 μm thick n-in-p micro-strip sensor
developed by the ATLAS ITk Strip Sensor collaboration and produced
by Hamamatsu Photonics [5]. In order to compare results for long
and short strips under the same conditions, a long-strip module was
approximated by connecting adjacent short-strip columns with wire-
bonds to form long (4.8 cm) strips. However, sections of the module
were connected to only one column to allow direct comparisons between
the two lengths on the same sensor connected to the same front-end
ASIC (Fig. 1). In addition, a second device (DAQload10) consisting of a
partially populated hybrid with three ABC130s and one ATLAS12 mini-
sensor was assembled. This assembly allowed for rapid testing without
using large number of ABC130s or full size sensors (Fig. 1).

2.2. Test beam setup

For the DESY test beams an electron beam energy of 4.4 GeV was
used, with tracking performed using the EUDET-style telescopes, which
consist of six MIMOSA26 pixel sensors with a pitch of 18.4 μm [6]. An
additional pixel layer with an FEi4 [7] read-out was used to improve
the timing of the telescope, allowing individual tracks to be matched to
hits on the strip module under test. Tracks were reconstructed using the
General Broken Lines algorithm [8], resulting in a pointing resolution
of 2 μm [6]. The strip modules were mounted between the third and
fourth telescope planes. All devices were read out using the current test
hardware (ATLYS FPGA development board) and software (ITSDAQ),
integrated with the telescope data acquisition software (EUDAQ) [9].
The beam was incident on the surface of the device, with the size of the
beam spot chosen to be ∼1 cm2, allowing for hits on strips wire-bonded
to an individual ABC130 at a time. For each strip device, threshold
scans were performed with a minimum of 200,000 events taken for each
threshold setting (∼2k events/strip). The scans were repeated for each
sensor bias voltage being studied, and then for the different positions on
the sensors.

3. Results

3.1. Lab results

The module LS4 was fully characterised in the lab for noise and gain
by injecting a known amount of charge in the chip and performing a
threshold scan. Shown in Fig. 2 are the data for both long and short strips
whilst operated at 400 V, where 𝑉𝐷𝐸𝑃 = 370 V. The increase in noise
between long and short strips due to the difference in strip capacitance
is in agreement with predictions from the ASIC design simulations [1].
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Fig. 1. Left: a fully assembled ABC130 Long-Strip Barrel Module (LS4); Right: a DAQload (DAQload10).

Fig. 2. Left: Gain averaged per ABC130 read-out chip for the long and short strips in module LS4 operated at 400 V. Right: Input nose in e− ENC and averaged per read-out chip for
long-strip module utilising ABC130 chips, where the long strips are read out in Stream 1 and short strips in Stream 0.

3.2. Module test beam results

In all test beam measurements, threshold scans were performed and
the tracks reconstructed with telescope data were used to determine the
efficiency at each threshold. The efficiency is defined as the fraction of
events in which a cluster is recorded whose centre is within 200 μm
from the track position as it passes the device under test. The threshold
scans can be used to infer the distribution of the collected charge,
as the difference between two points corresponds to the fraction of
electrons producing a signal between those two threshold values. The
threshold scans are then fit to a skewed error function, allowing for
a determination of the most probable value (MPV) for the collected
charge. The efficiency curves were evaluated at the DESY test beam for
the long-strip and short-strip regions of the LS4 module at two different
bias voltages, shown in Fig. 3. The differences in the curves arise from
the module being operated in undepleted and over-depleted modes,
where 𝑉𝐷𝐸𝑃 = 370 V. The noise occupancy as a function of the threshold
is fit with an error function; the shape describes the distribution well
with a minimal non-Gaussian tail in the noise spectrum [3]. The signal-
to-noise ratio yields values of 30 to 35 for a sensor bias voltage of
400 V [1].

The excellent pointing resolution from the telescope allows for
investigation of the behaviour within and between the strips. Fig. 4
shows the hit occupancy as a function of the distance a track passes
from the centre of a strip for a wide range of thresholds for DAQload10.

The curves show a flat efficiency in the central region of the strips,
with a drop in the efficiency near the strip edges which is attributable to

the effect of charge sharing between strips. Charge sharing can also be
seen by looking at the average cluster size at relatively low thresholds
(necessary for binary read-out systems), shown in Fig. 4. The likelihood
of two-strip clusters increases for electrons passing in between two
strips, where charge sharing is the highest.

4. Conclusions

An ATLAS ITk Strip barrel module was fully evaluated at a test beam
for electrical performance. The efficiency is greater than the ATLAS
specification of 99% for thresholds of up to 2.5 fC at a bias voltage of
400 V. The signal-to-noise ratio yields values of 30 to 35. In addition, a
flat efficiency in the central region of the strips with a width consistent
with the strip pitch is measured. The results are as expected for a non-
irradiated module and are well in agreement with the requirements
for the ITk. Further test beams with irradiated parts are necessary to
validate the modules and their components for end of life performance
at the HL-LHC.
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Fig. 3. Left: The efficiency versus the threshold for two bias voltages and two positions on the module LS4. Right: Fit of the noise occupancy vs. threshold distributions with an error
function (ERFC).

Fig. 4. Left: Hit occupancy, defined as the probability that a hit will be recorded in a given strip, given the distance of a track from the centre of such strip. The strip width (74.5 μm)
is indicated with dashed lines. Right: Cluster size versus in-strip position. Average cluster size versus hit position, along three strips. The integer position values correspond to the centre
of the strips.
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