「質量起源と超対称性物理の研究」研究会 平成15年3月4日

CDF実験の検出器開発と 電弱物理の最新結果

筑波大学物理 原和彦

CDF Run2a の現状 - TEVATRON, CDF検出器 -Run2bのための検出器増強 - 主に SVX2b シリコン検出器 -Run2aでの電弱物理 まとめ

CDF Run2a Status

 $\sqrt{s} = 1.8 \rightarrow 1.96 \text{ TeV}$

 $\sigma(W)$, $\sigma(Z) \sim 10\%$ higher $\sigma(tt) \sim 30\%$ higher

Tevatronルミノシティ

Run 1 (1996終了):

- 積分ルミノシティ: 110 pb⁻¹
- 初期ルミノシティ~2.4x10³¹ cm⁻²s⁻¹

Run 2 (Mar '01開始):

- 初期ルミノシティ(best): 3.7x10³¹cm⁻² s⁻¹
- 最近は:~7 pb⁻¹ / week
- 目標積分ルミノシティ: 2 fb⁻¹

デザインと比較して p~2/3 (emittance...) p~2/3(stacking rate...)

CDF Run2a Status

CDFII検出器

Run2aからの新しい装置

● silicon検出器 (8層:L00+SVX-II+ISL) 71万チャンネル

● 中央飛跡検出器 (COT:ドリフトチェンバー) 3万ワイヤー、96dE/dx測定

- 飛行時間検出器 (TOF:シンチレータ)
- 端冠部カロリメータ (タイル/ファイバー)
- *μ* 粒子検出領域の拡張
- Trigger(パイプライン)

XFT: COT ドリフトチェンバー@L1 SVT: シリコン@L2

• DAQ,

積分ルミノシティ(pb⁻¹) Winter Conference用

All COT-Muon-CAL w/CAL w/COT w/Muon w/SVX on Tape delivered

Run2bのための検出器増強 Run2bパラメータ 1. 初期ルミノシティ: ~50x10³¹cm⁻² s⁻¹ トリガー/ DAQの性能向上⁽¹⁾ CPR応答の高速化⁽²⁾ 2. 積分ルミノシティ: ~15 fb⁻¹ SVXII検出器の放射線損傷

⁽²⁾CPR2 (中央部プリシャワー)+ CCR(中央部クラック検出器)

中央部プリシャワーをシンチレータ タイル/ファイバーに基づいた高速 応答性のあるシステムに更新+ 8X_oTungstenをクラック部に追加

Photonの物理 Bジェットエネルギー分解能 Missing ET分解能

Run2bシリコン検出器

SVX-IIの寿命/ Run2bシリコンの設計

現在のL00とSVX-II(内側3層)は 放射線損傷によりRun2b中に 著しく性能が劣化する → Run2bシリコン検出器

CDF	R _{min} (cm)	L (fb ⁻¹)
L00	1.35	7.4
LO	2.54	4.3
L1	4.12	8.5
L2	6.52	10.7
ISL	20 - 28	>40
DOIMs	14	5.7

- 放射線耐性に優れた片面センサー
- 冷却パイプによる直接冷却
- ・ 光コンポーネントを使わない
- New 0.25µm SVX4チップ
 L00+SVX-IIと同等以上の性能
 短期間に建設できること

Run2bのための検出器増強

Run2bシリコン検出器

p⁺n 片面読み出し(2 sensors /6" wafer) 256 AC 結合型読み出しストリップ (75um/80um pitch) p⁺幅 = 8 um; Al 幅 = 14 um 読み出さない中間ストリップ poly-Si バイアス抵抗(1.5MΩ) 単ガードリング 放射線耐性のある"LHC型"センサー 高圧耐性~500V

axial:40.6 x 96.4 mm² 1.2°: 41.1 x 96.4 mm²

Axial型:1656+spares Stereo型:648+spares L00型axial:144+spares

Outer Axial/Stereo Si センサーの試作

Bias Voltage (V)

試作センサーの性能評価結果:電気的特性

Figure 3: Setup for the full strip scan (AC scan)

試作センサーの性能評価結果:電気的特性

ストリップの欠陥をaxial/stereo各18台ずつ 測定し、浜松の結果と比較した。

- ・浜松の欠陥はすべて検知され理解できた。
- ・浜松では、readout implantの切断を検知 できないことが分った。
 - ▶ 欠陥率*が極めて低い(<0.01%)た め見過ごしても問題ないと合意した。
 - *15 defects / 113 sensors =15 / 58k strips = 0.0026%

試作センサーの性能評価結果:中性子照射後

CDFでの放射線量: (0.46±0.14)×10¹⁴1-MeV n/cm²/fb⁻¹@L0

試作センサーの性能評価結果:中性子照射後

全空乏化電圧より高いバイアス(~250V)を与えることで、電気的特性を適正にできる。

Run2での電弱物理

- overview -

1. 最優先(~現状): Run 1での基本的な測定を再確認する

- W→l v 生成断面積
- W/Z cross section Ratio, W崩壊幅
- Z生成断面積の前後方非対称性
- 2. W生成のcharge asymmetry
 - PDF を評価する
- 3. W質量

2 fb⁻¹でのEvent 数予想

Sample	Run I	Run IIa
$W \rightarrow l \nu$	77k	2300k
$Z \rightarrow l l$	10k	202k
WV ($W \rightarrow l \nu$, V=W, γ ,Z)	90	1800
ZV ($Z \rightarrow l l$, V=W, γ ,Z)	30	500
tt (mass sample, ≥1 b-tag)	20	800

- 4. ボゾン対生成
 - WW, ZZ, Wγ
 - TGC ⇒ new physics

系統誤差の評価

Lepton energy scale

ミュー粒子の運動量scale:

Ψ Oresonanceを使ってを決める
 (E-lossやB-field corrections)
 Yや他のピークでcorrectionのcheck

電子エネルギーscale:

E/pで決定する

$$\sigma_{Z}^{*}BR(Z \rightarrow ee) = 267 \pm 6_{stat} \pm 15_{syst} \pm 16_{lum} pb$$

$$\sigma_{Z}^{*}BR(Z \rightarrow \mu\mu) = 247 \pm 6_{stat} \pm 12_{syst} \pm 15_{lum} pb$$

理論值(MRST:NNLO): 250.2 pb

W/Z cross section ratio & W width

$$R_{l} = \frac{\sigma(p\overline{p} \to W) \cdot \Gamma(W \to l\nu) \cdot \Gamma(Z)}{\sigma(p\overline{p} \to Z) \cdot \Gamma(Z \to ll) \cdot \Gamma(W)} = \frac{N_{W} \varepsilon_{Z} A_{Z}}{N_{Z} \varepsilon_{W} A_{W}}$$

$$R_e = \sigma(W \to ev) / \sigma(Z \to ee) =$$

9.88±0.24_{stat}±0.47_{syst}

$$R_{\mu} = \sigma(W \rightarrow \mu\nu) / \sigma(Z \rightarrow \mu\mu) =$$

10.68 \pm 0.27_{stat} \pm 0.30_{syst}

$$\Gamma(W) = \frac{\sigma(p\overline{p} \to W) \cdot \Gamma(W \to l\nu) \cdot \Gamma(Z)}{\sigma(p\overline{p} \to Z) \cdot \Gamma(Z \to ll) \cdot R_l}$$

$$\Gamma(Z \to ee) / \Gamma(Z) = 3.3662 \pm 0.0066\% \qquad \text{PDG}$$

$$\Gamma(W \to e\nu) = 226.4 \pm 0.3 \text{ MeV} \qquad \text{PDG}$$

$$\sigma(p\overline{p} \to W) / \sigma(p\overline{p} \to Z) = 3.39 \pm 0.03 \qquad \text{MRST}$$

$$e-channel: \Gamma(W) = 2.29 \pm 0.06_{stat} \pm 0.10_{syst} \text{ GeV}$$

$$\mu-channel: \Gamma(W) = 2.14 \pm 0.06_{stat} \pm 0.06_{syst} \text{ GeV}$$

$$PDG: 2.118 \pm 0.042 \text{ GeV}$$

$$Run1 \text{ CDF: } 2.04 \pm 0.11_{stat} \pm 0.09_{syst} \text{ GeV}$$

W width

Z F/B decay asymmetry

tree levelでは...

$$\frac{d\sigma(qq \rightarrow Z/\gamma \rightarrow ll)}{d\cos\theta} = A(1 + \cos^2\theta) + B\cos\theta$$
$$A_{FB} = \frac{N_F - N_B}{N_F + N_B} = \frac{\sigma(\cos\theta > 0) - \sigma(\cos\theta < 0)}{\sigma(\cos\theta > 0) + \sigma(\cos\theta < 0)} = \frac{3R}{8A}$$

A,Bは I_{weak} , Q_q, M_{ll}に依存する。

- V,A成分の直接測定
- New 中性ゲージボゾンの影響を受ける

W Mass Precision Measurement

Summary

 Run2aはslow startであったが、現在順調にデータ収集中 データ量: ~120 pb⁻¹ 記録済 (この内、~70 pb⁻¹ が2003冬) データ量予測: ~250 pb⁻¹ (2003夏) ~2000 pb⁻¹ (Run2a)

Run2bのための検出器増強がapproveされた。
 SVX2bシリコン検出器はプロトタイプ/初期量産の段階にある。
 2005年秋のCDF設置を目標。

~70 pb⁻¹を用いて、W/Z cross sectionなどの測定を行い、Runlの結果を再現した。
 W質量、TGCなどの結果は今後。