

Search for the Higgs Boson Decaying to Dark Matter at the LHC

Tsukuba Global Science Week, September 29, 2014

Hideki Okawa

University of Tsukuba, Division of Physics & CiRfSE

Standard Model

Elementary particles:

- Fermions: quarks & leptons.
- Vector Bosons (γ, W, Z, g): Force carriers.
- Scalar boson (H): Source of electroweak symmetry breaking & masses of the elementary particles.
- Higgs boson was the last missing piece in the Standard Model (SM), but was discovered in July 2012.
- So, Are we done? Or, what's next?

Remaining Mysteries

There are many indications that the SM is not the final theory!

- With just the SM, the unification of forces would not occur.
- **Higgs mass.** \rightarrow Theoretically unstable with just the SM. Top partners?
- Dark matter (DM) → Expected from astrophysical observations, but DM itself has not been detected yet.

Beyond Higgs Discovery

- Does the discovered Higgs boson really follow the SM?
- How can we find signs of Beyond-the-Standard-Model (BSM) physics in the Higgs sector?
 - Precision measurements of the Higgs couplings.

Deviation of Higgs Couplings by BSM Physics

Model	κ_V	κ_b	κ_γ	
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	Energy
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	Report,
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%	2013
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$	_

- Search for BSM decays of Higgs.
 → e.g. Invisible decay to dark matter.
- Search for more/heavier Higgs bosons.

BSM decay of Higgs boson to dark matter. Expected from Supersymmetry, etc.

- To search for invisibly decaying Higgs boson, we need "visible" particles produced along with the Higgs to search for such phenomenon.
- **ZH associated & vector-boson fusion** channels are highly sensitive to the invisible Higgs decay. **ZH especially has a "clean" signature.**

Analysis Strategy

"**Z(→e⁺e⁻,μ⁺μ⁻)+Missing E**_T" Topology

Missing E_T (E_T^{miss}): Momentum imbalance in the plane perpendicular to the beam line.

Schematic view of ATLAS detector (transverse plane)

Event Selection

- Events 10⁸ ATLAS Data Zboson $\sqrt{s} = 8 \text{ TeV}, \int L dt = 20.3 \text{ fb}^{-1}$ 10^{7} Other BG $ZH \rightarrow \ell \ell + inv.$ 10⁶ Top quark WW 10⁵ $WZ \rightarrow \ell v \ell \ell (\text{incl.}\tau)$ $ZZ \rightarrow \ell \ell \nu \nu, 4\ell (\text{incl.}\tau)$ 10^{4} SM Higgs $(m_H = 125.5 \text{ GeV})$ 10^{3} $\rightarrow \ell \ell + inv., BR(H \rightarrow inv.)$ 10² 10 1.5 Data / MC 0.5E 0 250 300 350 450 50 150 200 400 500 100 E_T^{miss} [GeV]
- Understanding of Missing E_T & suppression of Z BG (cross section is $\mathcal{O}(10^{4}\sim10^{5})$ higher than signals) are the key components.
- Event selection was carefully optimized to suppress the Z BG & still keep good signal acceptance.
- e^+e^- or $\mu^+\mu^-$ w/ 76 < M_{II} < 106 GeV; 3rd lepton veto (p_T >7 GeV)
- $d\phi(I,I) < 1.7$ • Jet veto (w/ p_T>25 GeV) p_T^{miss} : Missing E_T reconstructed from ID tracks • $E_T^{miss} > 90 \text{ GeV}$ • $d\phi(E_T^{miss}, p_T^{miss}) < 0.2$ • $IE_T^{miss} - p_T^{III} / p_T^{II} < 0.2$ • $d\phi(Z, E_T^{miss}) > 2.6$

Backgrounds

BG size

- $ZZ(\rightarrow l+l-vv):_q$ from the sign Monte Carlo • WZ: Estimat a 3-lepton convergence (on q). Z
- W+W-/tteacher Wt/Z($\rightarrow \tau^+\tau^-$): Estimated with data using e- μ CR.
- Z+jets: Estimated with data.

Z BG is suppressed to this level due to optimized event selection

W+jets/multijet: Estimated with data. Almost negligible.

 $g \longrightarrow Z$

Z Background

Difficult to model with MC. Estimated with data.

dφ(E_T^{miss},p_T^{miss})

Sideband regions: Z BG-enhanced.

 $N_{A}^{est} = N_{B}^{obs} \times \frac{N_{C}^{obs}}{N_{D}^{obs}} \times \alpha$ N_C/N_D~0.1, a=1.07 (2011), 1.04 (2012)

Systematics uncertainties from the stability of $N_A/N_B \& N_C/N_D$ ratios, subtraction of non-Z background

a. avant

10

300

 E_{T}^{miss} [GeV]

Make use of the lepton flavor symmetry ($e^+e^-, \mu^+\mu^-, e^\pm\mu^\mp$) in W+W-/tt, Wt/Z(\rightarrow T+T-) events. GeV ATLAS Preliminary vs = 8 TeV Data 🕻 L dt=13.0 fb⁻¹

WW/Top/ZT+T- Backgrounds

- N_{eu}^{BG,est}: estimated background yields.
- N_{eµ}^{data,sub}: events in the CR, but contributions from non-WW/Top/Z (→ττ) BG are subtracted with MC.
- k-efficiency factor & MC subtraction are the main source of systematics.

	2011	2012
WW/Top/Z(→τ+τ-)	0.5 ± 0.4 (stat) ± 0.1 (sys)	20 ± 3 (stat) ± 5 (sys)

WZ/ZZ Backgrounds

- Lepton scale & resolution: 1.0-1.5%. Jet energy scale & resolution: 3-6%.
- PDF & scale uncertainty: ~5%.
- gg→WW/ZZ→I+I-vv diagram is also considered (~3% of qq→ZZ)₀

- WZ/ZZ are both estimated with MC. WZ MC is validated in the 3-lepton CR.
- NLO theory & ATLAS measurement agree well for the ZZ cross section.

 $\sigma^{\text{measured}}(ZZ) = 7.1^{+0.5}_{-0.4}(\text{stat.}) \pm 0.3(\text{syst}) \pm 0.2(\text{lumi.})\text{pb}$ $\sigma^{\text{NLO}}(ZZ) = 7.2^{+0.3}_{-0.2}\text{pb}$

Results

No significant excess from the Standard Model expectation

 Obtained limits on the invisible branching fraction BR(H→inv) < <u>75%</u> <u>observed (63% expected) @ 95%</u> <u>confidence level</u>.

~20% better expected limit than CMS

• First results at the LHC on the invisible decay of the Higgs boson!

Data Period	2011 (7 TeV)	2012 (8 TeV)
$ZZ ightarrow \ell\ell u u$	$20.0 \pm 0.7 \pm 1.6$	$91\pm1\pm7$
$WZ ightarrow \ell u \ell \ell$	$4.8\pm0.3\pm0.5$	$26 \pm 1 \pm 3$
Dileptonic $t\bar{t}, Wt, WW, Z \to \tau\tau$	$0.5\pm0.4\pm0.1$	$20\pm3\pm5$
$Z \rightarrow ee, \ Z \rightarrow \mu \mu$	$0.13 \pm 0.12 \pm 0.07$	$0.9\pm0.3\pm0.5$
W + jets, multijet, semileptonic top	$0.020 \pm 0.005 \pm 0.008$	$0.29 \pm 0.02 \pm 0.06$
Total background	$25.4 \pm 0.8 \pm 1.7$	$138 \pm 4 \pm 9$
Signal $(m_H = 125.5 \text{ GeV}, \sigma_{\text{SM}}(ZH), \text{BR}(H \rightarrow \text{inv.}) = 100\%)$	$8.9\pm0.1\pm0.5$	$44 \pm 1 \pm 3$
Observed	28	152

Dark Matter Interpretation

Higgs-portal model: Assume that the DM only interacts with the Higgs boson. Predicts very small DM-nucleon cross section & matches with various experimental results.

Higgs-Portal Model

- Mapped the BR($H \rightarrow inv$) limit to Higgs-portal DM interpretation.
- LHC has very good sensitivity in m_{DM}<m_H/2 region & provides complementary results to the direct detection experiments.

Summary

- Searched for the Higgs boson decaying to dark matter with the ATLAS detector at the LHC using the full $\sqrt{s}=7$ & 8 TeV datasets.
- No significant excess is observed for both years. Obtained limits of BR(H→inv.)<75% (observed), 63% (expected) with 95% confidence level.
- BR(H→inv.) limit was interpreted with Higgs-portal dark matter scenarios. We have a very good sensitivity in m_{DM}<m_H/2 region & exceeds the limits from the direct detection experiments.
- Prospects:
 - With 300 (3000) fb⁻¹ of the 14 TeV LHC data, the ZH channel will have sensitivity of BR(H→inv.)~10, 20%. Combining with other channels would even enhance the sensitivity & will reach the interesting region for the supersymmetry.

backups

Discovery of Higgs Boson (2012)

Phys. Lett. B 716 (2012) 1

 In July 2012, we discovered a particle at ~125 GeV, consistent with a Standard Model Higgs boson.

 \rightarrow signal strengths in H \rightarrow YY,ZZ,WW,TT,bb & spin/parity results later in 2013.

• Further investigations are needed to confirm whether there is a sign of physics beyond the Standard Model (BSM) in the Higgs sector.

Standard Model Higgs?

Phys. Lett. B 726 (2013), 120

ATLAS-CONF-2014-009 (2014)

Higgs Width Measurement

ATLAS-CONF-2014-042

	Observed			Median expected			Alternative hypothesis
$R^B_{H^*}$	0.5	1.0	2.0	0.5	1.0	2.0	
$\mu_{ ext{off-shell}}$	5.6	6.7	9.0	6.6	7.9	10.7	$R_{H^*}^B = 1, \mu_{\text{off-shell}} = 1$
$\Gamma_H/\Gamma_H^{ m SM}$	4.1	4.8	6.0	5.0	5.8	7.2	$R_{H^*}^B = 1, \Gamma_H / \Gamma_H^{SM} = 1, \mu_{on-shell} = 1.51$
$\Gamma_H/\Gamma_H^{\rm SM}$	4.8	5.7	7.7	7.0	8.5	12.0	$\mathbf{R}_{H^*}^B = 1, \Gamma_H / \Gamma_H^{\mathrm{SM}} = 1, \mu_{\mathrm{on-shell}} = 1$

Higgs Width & Cross Section

$$\sigma_{i \to H \to f} \sim rac{\kappa_i^2 \kappa_f^2}{\Gamma_H}$$

- σ_{i→H→f}: Cross section of Higgs produced with production process i & decays process f.
- κ_i: Higgs coupling to particle i
- κ_f: Higgs coupling to particle f
- Γ_H: Higgs width

LHC Program

LHC 13-14 TeV (2015-2022)

- √s=13-14 TeV.
- Will surpass the design luminosity in Run 2. Twice the design lumi. in Run 3.
- Expected integ. lumi.
 ~300 fb⁻¹

HL-LHC 14 TeV (2025-2030s)

• √s=14 TeV.

LHCC open meeting, Dec. 2013 2009 LHC start-up, √s=900 GeV 2010 $\sqrt{s}=7-8$ TeV, L~6×10³³ cm⁻²s⁻¹, bunch spacing=50 ns ~25 fb⁻¹ 2011 Run 1 2012 2013 LS1 Towards the design energy & luminosity 2014 √s=13 TeV commissioning 2015 2016 Run 2 \sqrt{s} =13-14 TeV, L~1.6×10³⁴ cm⁻²s⁻¹, bunch space=25 ns 2017 2018 LHC Injector upgrade LS2 2019 2020 ~300 fb \sqrt{s} =14 TeV, L~2×10³⁴ cm⁻²s⁻¹, bunch space=25 ns 2021 Run 3 2022 2023 HL-LHC upgrade; interaction region, LS3 2024 crab cavities? 2025 ~3000 Run √s=14 TeV, L~5×10³⁴ cm⁻²s⁻¹ 2035 4,5,...

> σ (Higgs@LHC) > 50 pb w/ $\sqrt{s}=14$ TeV, cf. σ (Higgs@e⁺e⁻)~ 0.2-0.3 pb w/ $\sqrt{s}=250-500$ GeV

 The luminosity will increase by a factor 5 from the initial design. Expected integ. lumi.~250-300 fb⁻¹/year & ~3000 fb⁻¹ after a decade of operation.

The state

LHC

Luminosity

$$L = \frac{f \cdot N^2}{4 \cdot \epsilon \cdot \beta^*}$$

f: Bunch crossing frequency, N: number of protons in a bunch, ε: emittance, β*: amplitude function

CERN Courier, Aug. 2013

Parameter	2010	2011	2012	design value
Beam energy	3.5	3.5	4	7
β* in IP 1 and 5 (m)	2.0/3.5	1.5/1.0	0.6	0.55
Bunch spacing (ns)	150	75/50	50	25
Max. number of bunches	368	1380	1380	2808
Max. bunch intensity (protons per bunch)	1.2×1011	1.45 × 1011	1.7 × 10 ¹¹	1.15×10 ¹¹
Normalized emittance at start of fill (mm mrad)	≈2.0	≈2.4	≈2.5	3.75
Peak luminosity (cm ⁻² s ⁻¹)	2.1 x 10 ³²	3.7 x 10 ³³	7.7 x 10 ³³	1 x 10 ³⁴
Max. mean number of events per bunch crossing	4	17	37	19
Stored beam energy (MJ)	≈28	≈110	≈140	362

F.Bordry, LHCC Open Meeting, Dec. 2013

	Number of bunches	Intensity per bunch	Intensity Transverse per bunch emittance		Pile up	Int. yearly luminosity
25 ns BCMS	2508	1.15 × 10 ¹¹	1.9 μm	1.6×10 ³⁴ cm ⁻² s ⁻¹	~43	~42 fb⁻¹
				and	β* ≤ 0.5	m

To cope with the radiation damage of detector components, limitation of bandwidth, improve granularity & coverage

Phase-0 upgrade (2013-2014)

- ATLAS: Insertable B-layer (IBL), Level-1 topological trigger, Fast Track Trigger (FTK)
- CMS: 4th muon end-cap station, new detector consolidation

Phase-1 upgrade (2018-2019)

- ATLAS: High granularity Level-1 calorimeter trigger, New small wheel for Level-1 muon trigger
- CMS: New Level-1 trigger system, new pixel detector, new photo-detector & electronics for HCAL

Phase-2 upgrade (2023-2025)

- ATLAS: New silicon tracker & forward calorimeter & electronics, level-1 track trigger
- CMS: New tracker with Level-1 capability, DAQ/HLT upgrade, replace end-cap & forward calo; possibly extension of muon coverage & EM preshower system

Signal Strengths

ATL-PHYS-PUB-2013-014

TGSW 2014, September 29, 2014

Coupling Scale Factors

CMS

ATL-PHYS-PUB-2013-014, CMS NOTE-13-002

L (fb $^{-1}$)	κ_{γ}	κ_W	κ_Z	ĸg	κ _b	κ _t	$\kappa_{ au}$	$\kappa_{Z\gamma}$	κ _{μμ}	BR _{SM}
300	[5,7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4,7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

TGSW 2014, September 29, 2014

Yukawa Coupling

ATL-PHYS-PUB-2013-014

Coupling Scale Ratios

$L (fb^{-1})$	$\kappa_g \cdot \kappa_Z / \kappa_H$	$\kappa_{\gamma}/\kappa_{Z}$	κ_W/κ_Z	κ_b/κ_Z	κ_{τ}/κ_{Z}	κ_Z/κ_g	κ_t/κ_g	κ_{μ}/κ_{Z}	$\kappa_{Z\gamma}/\kappa_{Z}$
300	[4,6]	[5,8]	[4,7]	[8,11]	[6,9]	[6,9]	[13,14]	[22,23]	[40,42]
3000	[2,5]	[2,5]	[2,3]	[3,5]	[2,4]	[3,5]	[6,8]	[7,8]	[12,12]

ATLA	٩S
------	----

Nr.	Coupling		300 fb^{-1}	[3000 fb ⁻¹		
	ratio	Tł	neory un	c.:	Tł	neory un	c.:
		All	Half	None	All	Half	None
1	K _{VV}	7.6%	7.1%	6.9%	4.1%	3.3%	3.0%
	λ_{FV}	8.5%	7.7%	7.5%	3.7%	3.2%	3.0%
	KZZ	10%	9.3%	8.9%	6.1%	4.7%	4.1%
2	λ_{WZ}	4.7%	4.0%	3.7%	2.8%	2.0%	1.6%
	λ_{FZ}	9.4%	8.6%	8.4%	4.5%	3.9%	3.6%
	Кии	13%	11%	10%	6.3%	5.0%	4.5%
3	λ_{Vu}	10%	8.9%	8.5%	4.6%	3.8%	3.5%
	λ_{du}	11%	9.1%	8.2%	7.1%	5.6%	4.9%
	Κττ	22%	18%	16%	17%	14%	12%
4	$\lambda_{V\tau}$	12%	11%	9.8%	9.3%	7.2%	6.4%
	$\lambda_{q\tau}$	12%	9.6%	8.7%	9.1%	7.0%	6.1%
	$\lambda_{\mu\tau}$	24%	22%	21%	12%	9.6%	8.8%
	K _{gZ}	6.4%	4.4%	3.5%	4.6%	2.9%	2.0%
	λ_{WZ}	5.1%	4.6%	4.4%	3.0%	2.3%	2.1%
	λ_{tg}	18%	18%	17%	7.0%	6.1%	5.8%
5	$\lambda_{\tau Z}$	13%	11%	11%	10%	7.6%	6.6%
	$\lambda_{\mu Z}$	22%	21%	20%	9.2%	7.2%	6.3%
	λ_{gZ}	12%	11%	11%	5.9%	5.0%	4.7%
	$\lambda_{\gamma Z}$	11%	6.9%	5.1%	7.1%	3.9%	1.8%
	$\lambda_{(Z\gamma)Z}$	78%	78%	78%	30%	29%	29%
6	Κγγ	22%	16%	13%	14%	8.3%	5.4%
	$\lambda_{Z\gamma}$	11%	6.9%	5.1%	7.1%	3.9%	1.8%
	$\lambda_{W\gamma}$	11%	7.3%	5.6%	7.4%	4.2%	2.2%
	$\lambda_{t\gamma}$	27%	23%	21%	14%	9.7%	7.7%
	$\lambda_{\tau\gamma}$	15%	12%	11%	10%	7.7%	6.7%
	$\lambda_{\mu\gamma}$	21%	20%	20%	7.2%	6.6%	6.3%
	$\lambda_{g\gamma}$	18%	13%	11%	11%	6.8%	5.0%
	$\lambda_{(Z\gamma)\gamma}$	77%	76%	76%	29%	29%	29%

ATL-PHYS-PUB-2013-014, CMS NOTE-13-002

TGSW 2014, September 29, 2014

Mapping & DM-types

We consider three DM types: scalar, vector, majorana fermion

$$\Gamma^{\text{Scalar}}(h \to \chi \chi) = \frac{\lambda_{h\chi\chi}^{2} \operatorname{Scalar}_{V^{2}}}{64\pi m_{h}} \left[1 - \left(\frac{2m_{\chi}}{m_{h}}\right)^{2} \right]^{1/2} \qquad \sigma_{\chi N}^{\text{Scalar}} = \frac{\lambda_{h\chi\chi}^{2} \operatorname{Scalar}}{16\pi m_{h}^{4}} \frac{m_{N}^{4} f_{N}^{2}}{(m_{\chi} + m_{N})^{2}} \\ \Gamma^{\text{Vector}}(h \to \chi \chi) = \frac{\lambda_{h\chi\chi}^{2} \operatorname{Vector}_{V^{2}}}{256\pi m_{\chi}^{4} m_{h}} \left[m_{h}^{4} - 4m_{\chi}^{2} m_{h}^{2} + 12m_{\chi}^{4} \right] \left[1 - \left(\frac{2m_{\chi}}{m_{h}}\right)^{2} \right]^{1/2} \qquad \sigma_{\chi N}^{\text{Vector}} = \frac{\lambda_{h\chi\chi}^{2} \operatorname{Vector}}{16\pi m_{h}^{4}} \frac{m_{N}^{4} f_{N}^{2}}{(m_{\chi} + m_{N})^{2}} \\ \Gamma^{\text{Majorana}}(h \to \chi \chi) = \frac{\lambda_{h\chi\chi}^{2} \operatorname{Majorana}_{V^{2}} w_{h}^{2}}{32\pi\Lambda^{2}} \left[1 - \left(\frac{2m_{\chi}}{m_{h}}\right)^{2} \right]^{3/2} \qquad \sigma_{\chi N}^{\text{Majorana}} = \frac{\lambda_{h\chi\chi}^{2} \operatorname{Majorana}_{T^{2}}}{4\pi\Lambda^{2} m_{h}^{4}} \frac{m_{\chi}^{2} m_{N}^{4} f_{N}^{2}}{(m_{\chi} + m_{N})^{2}}$$

LHC & Other Colliders

Snowmass, Higgs Working Group Report, 2013

Table 1-20. Expected precisions on the Higgs couplings and total width from a constrained 7-parameter fit assuming no non-SM production or decay modes. The fit assumes generation universality ($\kappa_u \equiv \kappa_t = \kappa_c$, $\kappa_d \equiv \kappa_b = \kappa_s$, and $\kappa_\ell \equiv \kappa_\tau = \kappa_\mu$). The ranges shown for LHC and HL-LHC represent the conservative and optimistic scenarios for systematic and theory uncertainties. ILC numbers assume (e^- , e^+) polarizations of (-0.8, 0.3) at 250 and 500 GeV and (-0.8, 0.2) at 1000 GeV, plus a 0.5% theory uncertainty. CLIC numbers assume polarizations of (-0.8, 0.9) for energies above 1 TeV. TLEP numbers assume unpolarized beams.

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC	TLEP (4 IPs)
$\sqrt{s} \; ({\rm GeV})$	14,000	$14,\!000$	250/500	250/500	250/500/1000	250/500/1000	350/1400/3000	240/350
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	300/expt	3000/expt	250 + 500	1150 + 1600	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600
κ_{γ}	5-7%	2-5%	8.3%	4.4%	3.8%	2.3%	$-/5.5/{<}5.5\%$	1.45%
κ_g	6-8%	3-5%	2.0%	1.1%	1.1%	0.67%	3.6/0.79/0.56%	0.79%
κ_W	4-6%	2-5%	0.39%	0.21%	0.21%	0.2%	1.5/0.15/0.11%	0.10%
κ_Z	4-6%	2-4%	0.49%	0.24%	0.50%	0.3%	0.49/0.33/0.24%	0.05%
κ_ℓ	6-8%	2-5%	1.9%	0.98%	1.3%	0.72%	$3.5/1.4/{<}1.3\%$	0.51%
$\kappa_d = \kappa_b$	10-13%	4-7%	0.93%	0.60%	0.51%	0.4%	1.7/0.32/0.19%	0.39%
$\kappa_u = \kappa_t$	14 - 15%	7-10%	2.5%	1.3%	1.3%	0.9%	3.1/1.0/0.7%	0.69%