CDF B Physics Run-I Results and Run-II Prospects KEK Workshop Feb 9, 2000 Fumihiko Ukegawa Institute of Physics, Univ. of Tsukuba

- Introduction
- Selected Run-I Results mixing, sin(2), rare decays
- Run-II Prospects (x 20 more data)
- Conclusion

## Introduction

Why **B** Physics at a Hadron Machine? Because the production rates are high.  $p\overline{p} \rightarrow bX, \sqrt{s} = 1.8 \text{ TeV}$  $(bb) \sim 1 \text{ nb at } Y(4S)$ 10<sup>5</sup> NLO QCD: m,=4.75 GeV, A=215 MeV MRSDO,  $\mu = \mu_p = \sqrt{(m_b^2 + p_t^2)}$ 6 nb at  $Z^0$ ----- μ<sub>p</sub>/2<μ<2μ<sub>p</sub>, 4.5<m<sub>s</sub><5.0 GeV e<sup>-</sup>X (1989) 10 e<sup>-</sup>D<sup>0</sup>X (1989)  $\sigma(p_{T,b} \! > \! p_{T,min}, |y_b| \! < \! 1) (nb)$ bb x via  $\mu^{-}X$ pp ahX**∇** ψ/X  $10^{3}$ strong interaction ~ 10 µb at 1.8 TeV  $10^{2}$ 11 000000 ٢V ors are correlated 000000 30 20 40 pr.min (GeV)

Need to trigger on *B* decays, though. So far relied on leptons:

- Single leptons (e,  $\mu$ ) - B  $l^{+} \vee X$ • Single leptons (e,  $\mu$ ) p<sub>T</sub> > 8 GeV/c (p<sub>T</sub>(B)> ~ 20 GeV/c purity ~ 40%
- Di-leptons ( $\mu\mu$ ,  $e\mu$ )  $p_T > 2 \text{ GeV/c}$ -  $B \quad J/\psi X, J/\psi \quad \mu^+\mu^- < p_T(B) > ~ 10 \text{ GeV/c}$ -  $b \quad e \lor X, \overline{b} \quad \mu \lor X' \quad \text{purity} ~ 20\% (J/)$

Run II will employ impact parameter trigger. can collect all-hadronic final states such as  $B^0$  + -,  $B^0_s$   $D_s^-$  +.

## **CDF Detector (Run I)**

- Silicon microstrip detector
   Impact parameter
  - $= (13+40/p_T) \ \mu m$
- Central tracking chamber

( $p_{\rm T}$ ) / $p_{\rm T}$  ~ 0.001  $p_{\rm T}$ 

• Lepton detection



**Collected** ~ 110 pb<sup>-1</sup> in 1992 - 96.



- ~  $250 \text{ k } J/\psi$   $\mu^+\mu^-$ .
- Mass resolution ~ 15 MeV/ $c^2$ .
- ~ 20% from *B* decays, others direct /  $\chi_c$  /  $J/\psi$

## Run-I CDF *B* physics results *B* hadron properties

- Mass measurements of  $B_{s}^{0}$  and  $\Lambda_{b}$ .
- Lifetime measurements of  $B^+$ ,  $B^0$ ,  $B^0_{s'}$ ,  $\Lambda_b$ .
- $B^0 \overline{B^0}$  oscillations and flavor tagging.
- sin(2) from  $B^0/\bar{B}^0$   $J/\psi K^0_S$ .
- $B_c$  meson.
- Rare decay searches (FCNC decays)

 $- B \quad K^{(*)} l^{+} l^{-}, B^{0}, B^{0}_{s} \quad l^{+} l^{-}.$ 

## Run-I results (continued) QCD studies

- Inclusive *b* and *B* production.
- $b\overline{b}$  production correlations.
- *b*-quark fragmentation fractions,  $f_{\rm u}$ ,  $f_{\rm d}$ ,  $f_{\rm s}$  ...
- Onium production  $(J/\psi, Y)$ 
  - Prompt and non-prompt (from B, <sub>c</sub>) production
  - Production polarization

I cannot cover all results today. Please visit http://www-cdf.fnal.gov/physics/physics.html

# $B^{0}-\overline{B}^{0}$ Oscillation

- 2nd order weak interaction.
- Decay probability:



$$P_{B^{0}} = \frac{1}{2\tau} e^{-t/\tau} (1 + \cos mt) \qquad \text{Unmixed}$$

$$P_{B^{0}} = \frac{1}{2\tau} e^{-t/\tau} (1 - \cos mt) \qquad \text{Mixed}$$

• Oscillation frequency =  $\Delta m = m_H - m_L$ :  $m_q |V_{tq}|^2$ •  $m_s / m_d |V_{ts}| / |V_{td}|$  with less theory uncertainty Ingredients for *B*<sup>0</sup>-*B*<sup>0</sup> Oscillation Measurements

- Proper decay time
- Decay flavor ( $B^0$   $l^+ \vee X \text{ vs } B^0$   $l^- \vee X$ )
- Production flavor, *b* or *b*? Flavor tagging Flavor tagging is the hardest part. **Conventional approach:** identify the flavor of the other B semileptonic decay leptons, kaons, jet charge infer the flavor of the signal B

### Flavor Tagging (cont'd)

Exploit charge-flavor correlation with a nearby pion (Gronau, Nippe, Rosner). Example:  $D^{*+}$   $D^0$  <sup>+</sup>.

Since  $B^* \setminus B$ , use pions from  $B^{**} \quad B$  (resonant) or \_\_\_\_\_ Fragmentation  $b \quad B$ (non-resonant).

The correlations are the same if it is resonant or not.



## **Tagging Dilution**

No tag is perfect. e.g. for lepton tag:

- Leptons from  $b c l^+ s$
- $B^0$ ,  $B^0_{s}$  mixes.
- Fakes.

Probability of misidentification W**Dilution** D = 1 - 2W.

**Oscillation amplitude reduced by a factor** *D*. (unmixed - mixed) / total = cos(mt)

Tag effectiveness =  $D^2$ ,  $D \cos(m t)$ is the efficiency of the tag. **Proper decay time and decay flavor: signal side** • *I* with inclusive charm vertex (Secondary vertices) High stat, lower B<sup>0</sup> content  $B^{-}$ ,  $B^{0}$ ,  $B^{0}_{s}$ ,  $\Lambda_{b}$ , ..., charm, fakes • *I* with exclusive D reconstruction Low stat, high B<sup>0</sup> content e.g.  $B^0$   $l^- D^{*+} X, D^{*+} D^{0+}$ . Charge of the lepton identifies the decay flavor :

 $b \quad l^{-}\overline{v}c, \overline{b} \quad l^{+}v\overline{c}.$ 

## **CDF** Mixing Measurements

- Combination of signal and tags.
- Six measurements so far.

#### Trigger

- single lep  $\cdot l + D$
- single lep D X
- dilepton l + D

#### Signal

- single lep *l* + incl. charm jet Q + lepton
  - same-side pion

Tag

- lepton
- dilepton l + incl. charm lepton ( $e\mu$ ,  $\mu\mu$ )
  - lepton

Tag lepton can be part of trigger





### CDF ∆m<sub>d</sub> Results







- Now the amplitude is the quantity of interest.
- Final State =  $J/\psi K_S^0 = \mu^+\mu^- + -$  "Trivial"
- Initial State,  $B^0$  or  $\overline{B}^0$ ? Flavor Tagging
- Decay Time: Not necessary at CDF, but helps.

 $J/\psi K_{\rm S}^0 \sim 400$  signal ev. / 110 pb<sup>-1</sup>  $R^0/R^0$ 









## **Rare Decays**

- **B**  $K^{(*)} l^+ l^-$ 
  - *b s* FCNC transition
  - $-|V_{ts}|$
  - SM predicts B.R. ~  $10^{-7}$  to  $10^{-6}$ .
  - New physics could enhance it.
  - Has yet to be observed.

*I* can be resonant, e.g.  $J/\psi$ ,  $\psi$ (2S). Indistinguishable from *b*  $c\bar{c}s$ Look at non-resonant mass region.



- BR < 5.2 X 10<sup>-6</sup> @90% CL BR < 4.0 X 10<sup>-6</sup> @90% CI
- SM: few X 10<sup>-7</sup> SM: ~ 10<sup>-6</sup>

Expected signal ~ 0.5 event each.

Should see a few signal events in Run II.

#### More Rare Decays: **B**<sup>0</sup>, **B**<sup>0</sup><sub>s</sub> **l**<sup>+</sup>**l**<sup>-</sup>

- $V_{td}$  for  $B^0$ ,  $V_{ts}$  for  $B^0_s$
- Helicity suppressed
- B.R. highly suppressed:

SM predictions:

- B<sup>0</sup>  $\mu^{+}\mu^{-}$  (1.5 ± 1.4) x 10<sup>-10</sup>
- $B_{s}^{0}$   $\mu^{+}\mu^{-}$  (3.5 ± 1.0) x 10<sup>-9</sup>
- B<sup>0</sup>  $e^+ e^-$  (3.4 ± 3.1) x 10<sup>-15</sup>
- $-B_{s}^{0} = e^{+}e^{-}$  (8.0 ± 3.5) x 10<sup>-14</sup>

#### Rare Decays $B^0$ , $B^0_s = \mu^+\mu^-$



One candidate in the overlap region of B<sup>0</sup> and B<sup>0</sup><sub>s</sub> mass windows. B.R. < 8.6 x 10<sup>-7</sup> for B<sup>0</sup> B.R. < 2.6 x 10<sup>-6</sup> for B<sup>0</sup><sub>s</sub> both @ 95% C.L.

Also looked for decays to  $e^+ \mu^-$ ,  $e^- \mu^+$ B.R. < 4.5 x 10<sup>-6</sup> for B<sup>0</sup> B.R. < 8.2 x 10<sup>-6</sup> for B<sup>0</sup><sub>s</sub>

Still long way to go...



Can be the first meaningful test of the unitarity triangle.

## Summary

- CDF does B physics pretty well.
- Run I results cover virtually all aspects of B physics.
- Run II should produce more interesting results, in particular
  - sin(2) precision of  $\pm 0.08$ .
  - $m_s$  up to 40 ps<sup>-1</sup>.