# Hard probes (mainly jets) at LHC

Yaxian MAO

### Central China Normal University

Tsukuba Global Science Week Tsukuba, 2015



TGSW2015, September 30th, 2015 Tsukuba



## The QCD phase transition and HI collision

 QCD calculations (on the lattice) indicate that the phase transition occurs at a critical energy density

We can thus create a system of deconfined quarks and gluons

- $\rightarrow$  by heating (T)
- → by compression (matter density)



## The QCD phase transition and HI collision

 QCD calculations (on the lattice) indicate that the phase transition occurs at a critical energy density

We can thus create a system of deconfined quarks and gluons

- $\rightarrow$  by heating (T)
- → by compression (matter density)



#### Two labs to create QGP



#### **AGS** : 1986 - 2000

- Si and Au beams ;  $\sqrt{s} \sim 5$  GeV
- only hadronic variables

#### **RHIC** : 2000 -

- Au beams ; up to  $\sqrt{s} = 200 \text{ GeV}$
- 4 experiments (only two remain)



#### **SPS** : 1986 – 2003

- O, S, In, Pb beams ;  $\sqrt{s} \sim 20 \text{ GeV}$
- hadrons, photons and dileptons

#### LHC : 2010 -

- Pb beams ; up to  $\sqrt{s} = 5500 \text{ GeV}$
- ALICE, CMS and ATLAS

### **Probing QGP**

We study the QCD matter produced in HI collisions by looking how the well understood probes are modified, as a function of temperature (centrality of the collisions)



## **Centrality of the collisions**

Controls the volume, shape and energy density of the system

Multiplicity and energy of produced particles are correlated with geometry of collisions



Soft processes: long timescale, large  $\sigma$ ,  $\sigma_{tot} \propto N_{part}$ Hard processes: short timescale, large  $\sigma$ ,  $\sigma_{tot} \propto N_{coll}$ 

2000

N<sub>ch</sub>

1600

50

70

400

10<sup>-4</sup>

800

90

1200

## Hard scattering and jet production:QCD

#### Study the strong force using jet production



- Jets of particles produced in high energy parton-parton scattering
- Jet fragmentation function (FF): hadron distribution as a function of z, (momentum fraction taken by hadron from the jet)

## Jet-quenching in QGP



- Partons loose energy  $\Delta E$  when traversing the medium
  - Jet(E)  $\rightarrow$  Jet (E' = E- $\Delta$ E) + soft particles( $\Delta$ E)
- Jet quenching measures 'stopping power' of QGP

7

### Jet quenching evidences at LHC



- About 50% of jets ( $R_{AA} \sim 0.5$ ) are lost at a given  $p_T$  in most central PbPb
- Dijet pT ratio is imbalanced in most central PbPb collisions
  - Jets (light flavour) are quenched in central PbPb collisions, how about b-jets?

#### **b-jet suppression**



- Evidence of b-jet suppression in central PbPb collisions
- b-jet RAA favours strong jet-medium coupling from pQCD model

## Anatomy of jets

- Understand how jets interact with the QGP medium by studying the energy flow inside the jet
  - question to address: is the jet energy in PbPb redistributed radially?



$$\mathbf{r} = \sqrt{(\eta_{jet} - \eta_{ch})^2 + (\varphi_{jet} - \varphi_{ch})^2}$$
$$\rho(r) = \frac{1}{f_{ch}} \frac{1}{\delta r} \frac{1}{N_{jet}} \sum_{jets} \frac{p_T (r - \delta r / 2, r + \delta r / 2)}{p_T^{jet}},$$

Vacuum (pp reference)

Jets in Medium (jet broadening)



## Anatomy of jets

- Understand how jets interact with the QGP medium by studying the energy flow inside the jet
  - question to address: is the jet energy in PbPb redistributed radially?

Vacuum (pp reference)

Jets in Medium e) (jet broadening)





 $r = \sqrt{(\eta_{iet} - \eta_{ch})^2 + (\phi_{jet} - \phi_{ch})^2}$ 

 $\rho(r) = \frac{1}{f_{ch}} \frac{1}{\delta r} \frac{1}{N_{jet}} \sum_{iets} \frac{p_T(r - \delta r / 2, r + \delta r / 2)}{p_T^{jet}},$ 

- Understand how jets interact with the QGP medium by studying the particle longitudinal momenta
  - question to address: is the jet energy in PbPb redistributed in momentum space?

$$\xi = \ln(1/z) = \ln(p^{jet}/p_{||})$$



#### Jet shape analysis



- Core of the jet (dominated by high  $p_T$  particles)  $\rightarrow$  no changes
- Intermediate r (intermediate  $p_T$  particles)  $\rightarrow$  depletion/narrower
- Large radii (low p⊤ particles) →excess/broadening
  - Jet energy is redistributed inside jet cone

#### Inclusive jet FF vs. $p_T$ and $\xi$



- high  $p_T$  particles  $\rightarrow$  no changes
- intermediate  $p_T$  particles  $\rightarrow$  depletion
- low  $p_T$  particles  $\rightarrow$  excess
  - Jet fragmentation is modified

### Controlled Experiment: p + Pb ?

#### PbPb collisions





- Clear signs of Quark-Gluon Plasma (QGP)
- Strongly interacting particles affected by the presence of QGP
  - $\bullet$  quenched jets and high  $p_{\mathsf{T}}$
  - modified jet structure



- Can we understand the baseline for PbPb?
- How do strongly interacting particles behave in cold nuclear matter? quenching?
- Can we see nuclear structure?

## Jet quenching in p + Pb?



- No strong jet p<sub>T</sub> dependence observed
- Consistent with EPS09 description

#### Charged particles R<sub>pA</sub>



- p\_[GeV/c]
  No suppression observed for charged hadron production in pPb collisions
- High p<sub>T</sub> charged particles (50 < p<sub>T</sub> < 100) R<sub>pPb</sub> >1 using interpolated pp reference
- EPS09 calculation is under predicted the data → possible baryon/meson difference?

#### Dijet η asymmetry



Agreement between data and EPS09 calculation with systematics

#### Dijet η asymmetry



Agreement between data and EPS09 calculation with systematics

#### Dijet n asymmetry



16

### Probing nPDF with jets and hadrons

x - fractional momentum from a colliding nucleon carried by the parton



• Different  $p_T$  and  $\eta$  region can probe different x-range

### Probing nPDF with jets and hadrons

x - fractional momentum from a colliding nucleon carried by the parton



• Different  $p_T$  and  $\eta$  region can probe different x-range

### Probing nPDF with jets and hadrons

x - fractional momentum from a colliding nucleon carried by the parton



• Different  $p_T$  and  $\eta$  region can probe different x-range

## Charged particle and jet production asymmetry



- Charged hadrons:  $Y_{asym} > I (p_T < I0 \text{ GeV/c})$ ;  $Y_{asym} \sim I (p_T > I0 \text{ GeV/c})$
- Decreasing trend of  $Y_{asym}$  for both charged hadron and jets at very high  $p_T$

### dijet n and charged hadron asymmetry



 "Peripheral" (low HF activity): dijets shifted to p-going side, expect Y<sub>asym</sub> < 1</li>

"Central" (high HF activity): dijets shifted to
 Pb-going side, expect Y<sub>asym</sub> > 1

### dijet n and charged hadron asymmetry



- "Peripheral" (low HF activity): dijets shifted to p-going side, expect Y<sub>asym</sub> < 1</li>
- "Central" (high HF activity): dijets shifted to
  Pb-going side, expect Y<sub>asym</sub> > 1



### Summary and outlook

- AA: consistent picture about jet quenching in PbPb collisions from different experiments
  - high p<sub>T</sub> jets are strongly suppressed
  - heavy quark jets behave similarly as light quark jets
  - Jet fragmentation patterns are modified
- pA: too complex to serve as reference but interesting to explore
  - no jet quenching observed
  - pQCD calculation including nPDF effects can described data in general but not hadrons
- But...still left with questions...
  - can be addressed and checked by higher statistics LHC RunII and RunIII data with more differential measurements

#### ➡ flash in the next few slides with the questions in my mind...

#### How low p<sub>T</sub> Jet quenched?

#### How are the low $p_T$ jets suppressed?



- High pT RAA is in good agreement, however low pT behavior is different
  - different jet cone size, can be revisited with RunII data under same condition

### Flavour dependent energy loss?

Is the energy loss depending on the quark flavour as predicted?



- $R_{AA}(b-jet) \simeq R_{AA}(inclusive-jet)$  at high  $p_T$ , no strong flavour dependence
- $R_{AA}(J/\psi \leftarrow B) > R_{AA}(D) \simeq R_{AA}(\pi)$

More measurements down to low pT needed to conclude

## Longitudinal or transverse broadening?



- Di-hadron correlation study observed:
  - Broadening mainly in transverse direction and no increase in longitudinal direction

Need precise study with jets for  $\Delta \eta$  and  $\Delta \phi$  broadening

## Color charge dependent jet FF and modifications?

High z fragments modified? Different partons have different modification?



FF Rcp shows difference hints at high z between experiments

need precise measurements with coming LHC data

- Theory predicted jet fragmentation pattern modified differently for different parton mass
  - can be checked at LHC with coming data

# Thank you for your attention!





### backup

