

<u>K.Takemasa</u>, S.H.Kim, Y.Takeuchi, T.Iida , K.Nagata, C.Asano, R.Wakasa A.Kasajima, H.Kanno (Univ. of Tsukuba) For COBAND collaboration

Introduction

- We are developing STJ detectors and cryogenic amplifiers for COBAND (COsmic BAckground Neutrino Decay search) experiment.
- Brief introduction of COBAND experiment
 - measure the neutrino mass by observing the neutrino decay of cosmic background neutrino.
 - COBAND experiment consists of two type of measurement: <u>rocket experiment</u> and <u>satellite experiment</u>
- Requirements for the detector
 - Continuous spectrum of photon energy around E=25 meV(λ =50 μ m)
 - Energy measurement for a single photon with a better than 2% resolution for E=25meV to identify the sharp edge in the spectrum

STJ can achieves requirements. Nb/Al-STJ for the rocket experiment. Hf-STJ for the satellite experiment.

STJ (Superconducting Tunnel Junction) Detector

Structure

- Superconductor/Insulator/Superconductor
- Size: dozens \sim hundreds μ m square and 500 nm height

Working principle

- Incident photon is absorbed in the superconductor and excites cooper pairs.
- Excited cooper pairs become quasi-particles.
- Quasi-particles go through insulator by tunnel effect.
- Number of quasi-particles is determined by energy of incident particle.
- Thus, we can measure the energy of incident particle by measuring the tunnel current.

Overhead view of STJ detector

Energy resolution of STJ detector

- Statistical fluctuation in number of quasi-particles determines STJ energy resolution.
- Smaller superconducting gap energy Δ yields better energy resolution.

$\sigma_E = \sqrt{(1.7\Delta)F\varepsilon}$				
Material	Tc(K)	∆ (meV)		
Si	-	1200		
Niobium	9.20	1.550		
Aluminum	1.14	0.172		
Hafnium	0.16	0.021		

\mathbf{Nb}

- Well established as Nb/Al-STJ
- $N_{q.p.} = 25 \text{meV} / 1.7 \Delta = 9.5$
- poor resolution but counting is possible

Δ : Superconducting gap energy	
F: fano factor	
ε: Photon energy	

Tc : Superconducting critical temperature Need ~1/10Tc for practical operation

Hf

- Hf-STJ as a photon detector is not established
- $N_{q.p.} = 25 \text{meV} / 1.7 \Delta = 735$
- 2% energy resolution is achievable if fano factor <0.3</p>

Development of Nb/Al-ST

Performance of our Nb/Al-STJ sample

Our Nb/Al-STJ is fabricated with CRAVITY at AIST Structure: Nb/Al/AlOx/Al/Nb = 100nm/70nm/1nm/70nm/200nm

Nb Al2O3 Al Nb

Leakage current

- Requirement: $I_{leak} < 100 pA$ to detect a single far-infrared photon(λ =40-80 μ m)
- Measured:

STJ size	# of samples	I _{leak} @0.3mV
20×20µm²	7	39 ± 13 pA
10×10µm²	20	$14 \pm 7 pA$

Nb/Al-STJ meets the requirements of the rocket experiment !

Development of Hf-STJ

- Earlier version of our Hf-STJ
 - Structure: Hf/HfOx/Hf = 250nm/1.5nm/300nm
 - $\Delta \sim 20 \mu eV$
 - Leakage current at $20\mu V = 20\mu A@50mK$ ($100\mu m$ sq. sample)

Leakage current is too large.

Required leakage current = 10pA@50mK Necessary to perform improvements very much.

Development of Hf-STJ (Hf-STJ w/ thin Al lyaer)

- We add thin (a few nm) Al layer between the insulator and the upper Hf layer.
 - Josephson current is observed and it's suppressed by magnetic field.
 - Δ = 20~30μeV.
 - $I_{leak} = 5\mu A@128mK (200\mu m \times 200\mu m sample)$
 - I_{leak} becomes 16 times smaller than old sample.

• Response to visible laser pulses is observed.

Response to laser pulses

- λ=465nm
- 5MHz oscillation 5µs per 100ms.

Development of Hf-STJ (pure Hf-STJ)

- To reduce leakage current, We modified the sputtering condition to make smooth Hf layers.
 - Rough surfaces of Hf layer cause defects of insulator.
- We made a Hf-STJ consisting of Hf layers with a small roughness of 2.5 nm RMS deposited a new spattering condition.

Result (200 μ m sq. sample):

- Leakage current: $6\mu A$, 16 times smaller than the old Hf-STJ.
- Response to laser continuous illumination is observed.

This Hf-STJ works as a STJ photon detector.

However, leakage current is still large, need more improvement.

Response to visible(λ =465nm) DC-like laser light T = 140mK, 9Gauss B field is applied.

Development of cold amplifier

- Our Nb/Al-STJ achieves the requirement.
- But, we haven't succeeded in detecting a far infrared single photon due to readout noise.
- To improve the signal-to-noise ratio, we are developing cold amplifier.

 \rightarrow Cold amplifier using SOI(Silicon-On-Insulator) technology can achieve these requirements

@300 mK

SOI (Silicon-On-Insulator) device

- SOI device consists of devices on silicon thin film that exists on insulating film.
 - FD(Fully depleted) SOI: thin SOI layer(normally<50nm). All body areas under the channel are depleted.
- FD-SOI device was proved to operate at 4.2K by a JAXA group.
- Characteristics:
 - Low power consumption
 - High speed

Channel

Width : W

Box SiO₂

Si P Substrate

N⁺

Easy large scale integration

Source Gate

Suppression of charge-up by high mobility carrier due to thin depletion layer(~50nm)

FD-SOI-CMOS

N⁺

-50nm

STJ response to laser pulse amplified by Cold amplifier

- We connect 20 μ m sq. Nb/Al-STJ and SOI amplifier on the cold stage through a capacitance

4.7µF

 λ =465nm amplified by SOI amplifier situated at T=350mK

Summary

- R&D of STJ detectors and SOI-cryogenic amplifier are underway.
- Nb/Al-STJ satisfied our requirement for leakage current less than 0.1nA
- Leakage current of Hf-STJ becomes 1/16 by using smooth Hf layer
- Cryogenic amplifier with the SOI technology worked at 300mK
- We have succeeded in amplifying the STJ signal with the SOI cryogenic amplifier.

