Hard probes of the Quark Gluon Plasma

Marco van Leeuwen, Nikhef and Utrecht University

Tsukuba Global Science Week 28-30 September 2014

A nucleus-nucleus collision

Colored spheres: quarks White spheres: hadrons, i.e. bound quarks In a nuclear collision, a Quark-Gluon Plasma (liquid) is formed \Rightarrow Study this new state of matter

Probing the Quark-Gluon Plasma

Use self-generated probe: quarks, gluons from hard scattering large transverse momentum

RHIC and LHC

RHIC, Brookhaven Au+Au √s_{NN}= 200 GeV

LHC, Geneva Pb+Pb √s_{NN}= 2760 GeV

First run: 2000

STAR, PHENIX, PHOBOS, BRAHMS

First run: 2009/2010

Currently under maintenance Restart 2015 with higher energy: pp $\sqrt{s} = 13$ TeV, PbPb $\sqrt{s_{NN}} = 5.12$ TeV

> ALICE, ATLAS, CMS, (LHCb)

Collision centrality

Nuclei are large compared to the range of strong force

Peripheral collision **Central collision** top/side view: þ b finite b~0 fm front view:

This talk: concentrate on central collisions

Centrality continued

peripheral

central

Experimental measure of centrality: multiplicity

Need to take into account volume of collision zone for production rates

Testing volume (N_{coll}) scaling in Au+Au

Direct y spectra

PHENIX, PRL 94, 232301

Direct γ in A+A scales with N_{coll}

A+A initial production is incoherent superposition of p+p for hard probes

$\pi^0 R_{AA}$ – high-p_T suppression

Hard partons lose energy in the hot matter

Hadrons: energy loss

Getting a sense for the numbers – RHIC

Ball-park numbers: ∆E/E ≈ 0.2, or ∆E ≈ 3 GeV for central collisions at RHIC

From RHIC to LHC

 R_{AA} depends on *n*, steeper spectra, smaller R_{AA}

From RHIC to LHC

RHIC

RHIC: n ~ 8.2 LHC: n ~ 6.4 $(1-0.23)^{6.2} = 0.20$ $(1 - 0.23)^{4.4} = 0.32$

> Energy loss at LHC is larger than at RHIC $(R_{AA}$ is similar due to flatter spectra)

Towards a more complete picture

- Geometry: couple energy loss model to model of evolution of the density (hydrodynamics)
- Energy loss not single-valued, but a distribution
- Energy loss is partonic, not hadronic
 - Full modeling: medium modified shower
 - Simple ansatz for leading hadrons: energy loss followed by fragmentation
 - Quark/gluon differences

Medium-induced radiation

Depends on density ρ through mean free path $\lambda ~~\lambda \propto \frac{1}{-}$

Fitting the model to the data

Factor ~2 larger at LHC than RHIC

Comparing several models

 \hat{q} values from different models agree \hat{q}/T^3 larger at RHIC than LHC

Transport coefficient and viscosity

Relation transport coefficient and viscosity

Scaled transport coefficient slightly smaller at LHC

Increase of η /s and decrease of q/T^3 with collision energy are probably due to a common origin, e.g. running α_S

Results agree reasonably well with expectation: $\frac{\eta}{r} \approx 1.25 \frac{T^{\circ}}{r}$

Conclusion

- High-p_T particles are a 'hard probe' of the Quark Gluon Plasma
- Use these to find the transport coefficient of the QGP:
 - RHIC: $\hat{q} = 1.2 \pm 0.3 \ GeV^2/fm$
 - LHC: $\hat{q} = 1.9 \pm 0.7 \ GeV^2/fm$
- Increase from RHIC to LHC slightly smaller than expected
- \cdot Similar effect observed in viscosity η
- Probably common origin, e.g. running $\alpha_{\rm S}$

Next step: use other observables, e.g. *jets*, to test and improve energy loss models

Extra slides

Geometry

Space-time evolution is taken into account in modeling

A simplified approach

Notes:

- This is the simplest ansatz most calculation to date use it (except some MCs)
- Jet, γ-jet measurements 'fix' E, removing one of the convolutions

RHIC and LHC

Systematic comparison of energy loss models with data Medium modeled by Hydro (2+1D, 3+1D) p_T dependence matches reasonably well

CUJET: α_s is medium parameter Lower at LHC HT: transport coeff is parameter Higher at LHC

Nuclear geometry: N_{part}, N_{coll}

Two limiting possibilities:

- Each nucleon only **interacts once**, 'wounded nucleons' $N_{part} = n_A + n_B$ (ex: 4 + 5 = 9 + ...)

Relevant for **soft production**; long timescales: $\sigma \propto N_{part}$

Nucleons interact with all nucleons they encounter
N_{coll} = n_A x n_B (ex: 4 x 5 = 20 + ...)

Relevant for hard processes; short timescales: $\sigma \propto N_{\text{bin}}$

Measured R_{AA} is a ratio of yields at a given p_T The physical mechanism is energy loss; shift of yield to lower p_T

The full range of physical pictures can be captured with an energy loss distribution $P(\Delta E)$

Nuclear modification factor

Suppression factor 2-6 Significant p_T -dependence Similar at RHIC and LHC?

So what does it mean?