JULY 2014 VOL 10 NO 7 www.nature.com/naturephysics

nature physics

Dark matter as a coherent quantum wave

PHYSICS OF HEARING Fluid-dependent pitch perception

GRAPHENE SUPERLATTICES Hofstadter butterfly density of states

CUPRATE SUPERCONDUCTORS ARPES plugs the gaps Hsi-Yu Schive (薛熙于) Tzihong Chiueh Tom Broadhurst *UT-NTU Joint Conference (Sep. 29, 2014)*

Introduction

◆ Cold dark matter (CDM) vs. wave dark matter (↓DM)

Numerical Methods (

Adaptive Mesh Refinement (AMR)
 Graphic Processing Units (GPU)

UDM Simulations
 Solve the small-scale crises of CDM

Summary

ntroduction

Cold Dark Matter

• CDM (Cold Dark Matter):

- Collisionless particles with self-gravity
- Relatively heavy (GeV scale)
- Work very well on large scales (galaxy cluster scale)
- Controversial on small scales (dwarf galaxy scale)
 - > Rely on complicated baryonic feedbacks …

• Main issues on small scales:

- Cusp-core problem
 - $\triangleright \rightarrow$ Mass is too concentrated at the center ?
- Missing satellites problem
 - \rightarrow Over abundance of dwarf galaxies ?

Wave Dark Matter (UDM)

- Extremely light particles (~ $10^{-22} \text{ eV} \rightarrow 10^{31}$ lighter than CDM)
 - de Broglie wavelength becomes astronomical (kpc) scale
 - Wavelike properties (e.g., interference)
- Governing eq.: Schrödinger-Poisson eq. in the comoving frame

$$i\frac{\partial \psi(x)}{\partial t} = -\frac{1}{2\eta}\nabla^2 \psi(x) + \eta \varphi(x)\psi(x),$$
$$\nabla^2 \varphi(x) = 4\pi Ga(t)(|\psi(x)|^2 - 1)$$

 $\eta \equiv m_{\psi}/\hbar$: particle mass, ψ : wave function φ : gravitational potential, a: scale factor

Quantum Fluid

 Schrödinger eq. can be rewritten into conservation laws

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0, \qquad \qquad \psi = f e^{iS/\hbar}, \\ \rho = m f^2, \\ v = \eta^{-1} \nabla S$$

$$Hydro: \frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\frac{1}{\rho} \nabla P - \nabla \varphi \qquad \qquad \qquad \tilde{P}_{ij} = \frac{\hbar^2}{m} \left(\partial_i f \partial_j f - \frac{1}{4} \delta_{ij} \nabla^2 f^2 \right)$$

$$quantum stress$$

$$k_{J} = (6a)^{1/4} (H_{0}\eta)^{1/2}$$

Jeans wave number in ψ DM

Numerical Methods

Numerical Challenge

Density

Wave function

 → Ultra-high resolution is required
 → GAMER : GPU-accelerated Adaptive MEsh Refinement Code

Adaptive Mesh Refinement (AMR)

• Example: interaction of active galactic nucleus (AGN) jets

Graphic-Processing-Unit (GPU)

VDM Simulations

ψDM vs. CDM (Large Scale)

• ψDM (GAMER)

• CDM (GADGET)

ψDM on Small Scale

Halo Density Profile

Cored instead of cuspy profiles

Consistent with Milky Way dwarf spheroidal galaxies (dSph)

Cores satisfy the soliton solution

Cusp-core Problem

Jeans Eq.: $\frac{d(\rho_{\star}\sigma_{r}^{2})}{dr} = -\rho_{\star}\frac{d\Phi}{dr} - \frac{2\beta\rho_{\star}\sigma_{r}^{2}}{r}$ $\rho_{\star}: star number density$ $\sigma_{r}: radial velocity dispersion$ $\Phi: gravitational potential$ $\beta: velocity anisotropy$

Assuming constant and isotropic velocity dispersion $\rho_{\star} = \rho_0 exp[-\Phi(r)/\sigma_r^2]$

Find the best-fit $m_{\psi} \& r_{c}$ $\rightarrow m_{\psi} \sim 8.1*10^{-23} eV$ $r_{c} \sim 0.92 kpc$

Missing Satellites Problem

\psiDM projZ

CDM projZ

Summary

- Wave Dark Matter (UDM):
 - Extremely light particles (m ^ψ ~ 10⁻²² eV)
 - Governing eq.: Schrödinger-Poisson eq.
 - ◆ Quantum pressure → suppress structures below the Jeans scale
 - Schive et al., 2014, Nature Physics (cover), 10, 496
 - Schive et al. 2014, submitted to PRL (arXiv:1407.7762)
- Numerical Challenges:
 - Ultra-high resolution is required due to the wave dispersion relation
 - GAMER: GPU-accelerated Adaptive-MEsh-Refinement
 - Schive et al., 2010, ApJS, 186, 457
- ψDM Simulations
 - ◆ Solitonic cores within each halo → cusp-core problem !?
 - ♦ Small halos are highly suppressed → missing satellites problem !?
 - By fitting to the Fornax dwarf spheroidal galaxies
 - \rightarrow m_u ~ 8.1*10⁻²³ eV