Current Results & Future Perspectives from Reactor Neutrino Experiments

Soo-Bong Kim (KNRC, Seoul National University) "Tsukuba Global Science Week (TGSW2014), Tsukuba, Sep. 28-30, 2014"

Reactor θ_{13} Experiments

RENO at Yonggwang, Korea

θ_{13} Reactor Neutrino Detectors

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

- (11 institutions and 40 physicists)
- Chonbuk National University
- Chonnam National University
- Chung-Ang University
- Dongshin University
- GIST
- Gyeongsang National University
- Kyungpook National University
- Sejong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

RENO Status

- Data taking began on Aug. 1, 2011 with both near and far detectors. (DAQ efficiency : ~95%)
- A (220 days) : First θ₁₃ result [11 Aug, 2011~26 Mar, 2012] PRL 108, 191802 (2012)
- B (403 days) : Improved θ₁₃ result [11 Aug, 2011~13 Oct, 2012] NuTel 2013, TAUP 2013, WIN 2013
- C (~800 days) : New θ₁₃ result
 Shape+rate analysis (in progress)
 [11 Aug, 2011~31 Dec, 2013]
- Total observed reactor neutrino events as of today : ~ 1.5M (Near), ~ 0.15M (Far)
 → Absolute reactor neutrino flux measurement in progress [reactor anomaly & sterile neutrinos]

Detection of Reactor Antineutrinos

New RENO Results

- ~800 days of data
- New measured value of θ₁₃ from rate-only analysis (Neutrino 2014)
- Shape analysis in progress
- Observation of a new reactor neutrino component at 5 MeV
- Results of reactor neutrinos with neutron capture on H (Significant improvement from Neutrino 2014)

Neutron Capture by Gd

Measured Spectra of IBD Prompt Signal

Near Live time = 761.11 days # of IBD candidate = 457,176# of background = 14,165 (3.1 %) Far Live time = 794.72 days # of IBD candidate = 53,632 # of background = 4366 (8.1 %)

Observed Daily Averaged IBD Rate

- Good agreement with observed rate and prediction.
- Accurate measurement of thermal power by reactor neutrinos

Observed vs. Expected IBD Rates

- Indication of correct background subtraction

New θ_{13} Measurement by Rate-only Analysis

(Preliminary)

 $\sin^2 2\theta_{13} = 0.101 \pm 0.008(\text{stat.}) \pm 0.010(\text{syst.})$

 $\sin^2 2\theta_{13} = 0.113 \pm 0.023$ $\Rightarrow 0.100 \pm 0.016$ $\Rightarrow 0.101 \pm 0.013$ 4.9 σ (Neutrino 2012)
6.3 σ (TAUP/WIN 2013)
7.8 σ (Neutrino 2014)

Why n-H IBD Analysis?

Motivation:

- 1. Independent measurement of θ_{13} value.
- 2. Consistency and systematic check on reactor neutrinos.

- * RENO's low accidental background makes it possible to perform n-H analysis.
 - -- low radio-activity PMT
 - -- successful purification of LS and detector materials.

IBD Sample with n-H

preliminarv

	n HIPD Event Vertex Distribution				
2 1.5 1 0.5 <u>[H]</u> 0 2 -0.5 -1 -1.5				Near	Far
	target γ-catcher 80 0 70 60 60 50 40 30 30 20 10	80 70	Live time(day)	379.663	384.473
		-60	IBD Candidate	249,799	54,277
		50 40	IBD(/day)	619.916	67.823
		30	Accidental (/day)	25.16±0.42	68.90±0.35
		20	Fast Neutron(/day)	5.62±0.30	1.30±0.08
-		10 0	LiHe(/day)	9.87±1.48	3.19±0.37
	$\rho^2 [m^2]$				

Results from n-H IBD sample

Very preliminary Rate-only result (B data set, ~400 days)

$\sin^2 2\theta_{13} = 0.103 \pm 0.014$ (stat.) ± 0.014 (syst.)

(Neutrino 2014) $\sin^2 2\theta_{13} = 0.095 \pm 0.015 (\text{stat.}) \pm 0.025 (\text{syst.})$

Removed a soft neutron background
 and reduced the uncertainty of the accidental background

preliminary

Reactor Neutrino Oscillations

Energy Calibration from γ-ray Sources

Energy Calibration from B12 β-decays

Energy Calibration from B12 β -decays

B12 Energy Spectrum (Near & Far)

Observation of a New Reactor Neutrino Component at 5 MeV

Fraction of 5 MeV excess (%) to expected flux [2011 Huber+Mueller]

- Near : 2.18 \pm 0.40 (experimental) \pm 0.49 (expected shape error)
- Far : 1.78 ± 0.71 (experimental) ± 0.49 (expected shape error)

The 5 MeV Excess Seen at Double-Chooz and Daya Bay

Double-Chooz, Neutrino 2014

Daya Bay, ICHEP 2014

Correlation of 5 MeV Excess with Reactor Power

Correlation of 5 MeV Excess with Reactor Power

Far/Near Shape Analysis for Δm_{ee}^2

Reactor Neutrino Disappearance on L/E

RENO's Projected Sensitivity of θ_{13}

A Brief History of θ_{13} from Reactor Experiments

θ_{13} from Reactor and Accelerator Experiments

First hint of δ_{CP} combining Reactor and Accelerator data

Best overlap is for Normal hierarchy & $\delta_{CP} = -\pi/2$

Is Nature very kind to us? Are we very lucky? Is CP violated maximally?

Strong motivation for anti-neutrino run and precise measurement of θ_{13}

Courtesy C. Walter (T2K Collaboration) Talk at Neutrino 2014

Summary

- We observed a new reactor component at 5 MeV. (3.6 σ)
- New measurement of θ_{13} by rate-only analysis

 $\sin^2 2\theta_{13} = 0.101 \pm 0.008(\text{stat}) \pm 0.010(\text{syst})$ (preliminary)

- Shape analysis for Δm^2 in progress... (stay tuned)
- First result on n-H IBD analysis

 $\sin^2 2\theta_{13} = 0.103 \pm 0.014(\text{stat}) \pm 0.014(\text{syst})$ (very preliminary)

■ sin²(2θ₁₃) to 7% accuracy within 3 years → will provide the first glimpse of $δ_{CP.}$ If accelerator results are combined.

Overview of RENO-50

 RENO-50 : An underground detector consisting of 18 kton ultralow-radioactivity liquid scintillator & 15,000 20" PMTs, at 50 km away from the Hanbit(Yonggwang) nuclear power plant

• Goals : - Determination of neutrino mass hierarchy

- High-precision measurement of θ_{12} , Δm_{21}^2 and Δm_{31}^2
- Study neutrinos from reactors, the Sun, the Earth, Supernova, and any possible stellar objects

 Budget : \$ 100M for 6 year construction (Civil engineering: \$ 15M, Detector: \$ 85M)

 Schedule : 2014 ~ 2019 : Facility and detector construction 2020 ~ : Operation and experiment

2012 Particle Data Book

LEPTONS

Neutrino Mixing

1

• Precise measurement of
$$\theta_{12}$$
, Δm_{21}^2 and Δm_{32}^2

$$\frac{\delta \sin^2 \theta_{12}}{\sin^2 \theta_{12}} < 1.0\%(1\sigma) \qquad \frac{\delta \Delta m_{21}^2}{\Delta m_{21}^2} < 1.0\%(1\sigma) \qquad \frac{\delta \Delta m_{32}^2}{\Delta m_{32}^2} < 1.0\%(1\sigma) \qquad (\leftarrow 5.2\%)$$

Additional Physics with RENO-50

- Neutrino burst from a Supernova in our Galaxy
 - ~5,600 events (@8 kpc) (* NC tag from 15 MeV deexcitation γ)
 - A long-term neutrino telescope
- Geo-neutrinos : ~ 1,000 geo-neutrinos for 5 years
 - Study the heat generation mechanism inside the Earth
- Solar neutrinos : with ultra low radioacitivity
 - MSW effect on neutrino oscillation
 - Probe the center of the Sun and test the solar models
- Detection of J-PARC beam : ~200 events/year

Neutrinoless double beta decay search : possible modification like KamLAND-Zen

J-PARC neutrino beam

Motivation of Search for Cosmic Background Neutrino Decay

* See talks by Yuji Tacheuchi and Takuya Okudaira

- Only neutrino mass is unknown in elementary particle physics.
- Detection of neutrino decay ⇒ neutrino mass itself if combined with Δm² measured by neutrino oscillation experiments.
 10¹³

• As the neutrino lifetime is very long, we need use cosmic background neutrinos to observe the neutrino decay. Observation of neutrino decay \Rightarrow a discovery of the cosmic background neutrinos predicted by cosmology.

Neutrino Decay Detection Sensitivity

• Need the energy resolution better than 2%.

• Can observe the v_3 decay with a mass of 50meV, and a lifetime of $1.5 \ge 10^{17}$ year (present lifetime limit: $3 \ge 10^{12}$ year)

• A rocket experiment in 2017 as a preparatory trial for the satellite experiment \rightarrow Improve lifetime limit by two orders of magnitude (~10¹⁴year).

R&D of superconducting tunnel junction (STJ) detector

Thanks for your attention!

Shape Analysis for Δm_{ee}^2

In progress.... Stay tuned...

Without 5 MeV excess

With 5 MeV excess

Reactor Neutrino Oscillations at 50 km

Neutrino mass hierarchy (sign of Δm_{31}^2)+precise values of θ_{12} , $\Delta m_{21}^2 \& \Delta m_{31}^2$

