素粒子実験での飛跡検出ーシリコン半導体検出器

素粒子実験 原

標準模型粒子(すべて実験的に観測)

F

LHC - ATLAS実験

ATLAS検出器(衝突点を4π囲む複数の検出器群) 内部飛跡検出器(荷電粒子の運動量測定) ■ 電磁カロリメータ(e,γのエネルギー測定) ハドロンカロリメータ(p,π,n等のエネルギー測定) µ粒子検出器(µ粒子の運動量測定)

K. Hara 実験物理学Ⅲ(素粒子)

飛跡検出と運動量測定

飛跡検出と運動量測定

<u>K. Hara</u> 実験物理学III(素粒子)

素粒子実験用飛跡検出器あれこれ(1)

1932 Anderson - positron **5** 197 1947 Rochester & Butler-strange quark

1972 Gargamelle–neutral current

Spark chamber (Geiger/Muller+)

*. ### 実験 ###!(素##?) 素粒子実験 用飛跡検出器あれこれ(2)

シリコン検出器の総面積の変遷

NA11 (CERN) 実験(pre VLSI)

 実験の目的: チャームを含む中間子(D)の 崩壊時間の測定(崩壊長 cτ~30 µm)
 ⇒ 位置分解能の要求: 10µm

1200 strips, 20 µm pitch 100 µm read-out pitch ⇒ Resolution of 4.5 µm

固定標的実験だからできた、、、

9

相対論効果で~10mm

UA2 (CERN) 実験 (with VLSI)

W/Zの精密測定

増幅した(アナログ)信号を外部に順次取り出す

3µm nMOS プロセス 特定用途のIC ASIC (application specific integrated circuit)

K. Hara 実験物理学Ⅲ(素粒子)

CDF 実験のシリコン飛跡検出器

トップクォークの発見と精密測定

R=1.4mの領域のほとんどはwire chamber (COT) 衝突点+ 中間領域を位置分解能に優れたシリコンストリップ型

シリコン Strip & Pixel 検出器

- ・ なぜシリコンか?
 - 半導体
 - p-n 接合ダイオード
 - 空乏化
- ・ シリコン検出器
 - 信号のながれ
 - 信号処理の例
- 位置分解能について
- ・ シリコン検出器の進化(SOI, LGAD)
- 使用上の注意
- 放射線耐性
- 課題

Why silicon? "適切な" バンドギャップ

15

Why silicon? シリコン検出器の良いところ

• 工業用半導体CMOS プロセスをそのまま使える

サブミクロン単位は通常工程 🖝 電極サイズは読み出しエレキの集積度で決まる 技術は急速に進展 (●製造コストがダウン, 面積あたりにするとまだ高価) シリコン半導体プロセス:読み出しエレキとの一体化が比較的容易

"信号化"エネルギーが小さい ・コンパクトに必要信号量が得られる

電子-ホール対生成は3.67eV: ガス検出器(Xe/Ar:22/26 eV/ion), シンチレータ (100eV/γ) 薄い検出器(50~300µm)で高速で拡散が抑えられる: σx<10µm が可能⇒ σx<0.65µm w/ SOI 固体なので保持用の構造体は不要 (コンパクトな検出器)

• 放射線耐性のある設計が開発されてきた

素粒子実験で使用できる⇒詳細は割愛

Why Silicon?

1 H 1.01	2 2A			3 Li 6.94	meta non-	al met	al					13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00	V in IV: 電子過剰 III in IV: 電子欠乏
3 Li 6.94	4 Be 9.01	² He 4.00 noble gas										5 B 10.8	6 C 12.0	7 N 14.0	8 0 16.0	9 F 19.0	10 Ne 20.2	-
11 Na 23.0	12 Mg 24.3	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 - 8B	10	11 1B	12 2B	13 Al 27.0	14 Si 28.1	15 P 30.1	16 S 32.1	17 Cl 35.5	18 Ar 39.9	
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.9	27 Co 58.9	28 Ni 58.7	29 Cu 63.6	30 Zn 65.4	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8	_ <mark>_n-type silicon</mark> (p-type silicon)-
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe	不純物準位
85.5 55 Cs	87.6 56 Ba	57 La	91.2 72 Hf	92.9 73 Ta	95.9 74 W	[98] 75 Re	76 Os	103 77 Ir	78 78 Pt	79 Au	80 Hg	81 Ti	82 Pb	83 Bi	84 Po	85 At	86 Rn	$\int \frac{\text{Li Sb P As Bi}}{\overline{0.033} \ \overline{0.039} \ \overline{0.044} \ \overline{0.040} \ $
ii & ii R (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)															Silicon band gap 1.1eV 0.049 0.069 n-type 0.049 0.069 n-type 0.049 0.069 n-type			
読∂	(as donor) や (as acceptor) はの隣なので宿田に入れやりし たみ出し電子回路もシリコン														B Al Ga In TI			
	4 共有電子													有電-	₹			準位の高さは視覚的にはあっていないので注意

不純物半導体(doped semiconductor)

Diode (pn接合)

シリコンダイオード検出器 (逆バイアス電圧)

20

シリコン検出器のS/Nと空乏層厚

厚さ ATLAS strip ($\sigma_N = 600 \Rightarrow 300$ um) ATLAS pixel ($\sigma_N = 150 \Rightarrow 100$ um/150um)

$$d = \sqrt{2\epsilon\rho\mu V_b} = 0.53\sqrt{\rho_n V_b}$$

抵抗率 = 0.32 $\sqrt{\rho_p V_b}$ [um]

キャリアの移動度(480 vs 1350 cm²/Vs for p vs n-bulk)

300umを全空乏化するには

V _b	1 k Ω cm	4 kΩcm	ĺ
n-bulk	320V	80V	
p-bulk	880V	220V	

IC用の"高純度": a few Ωcm ⇒ センサーには ICプロセス用の1/1000の純度が必要

高純度シリコン

溶融と再結晶の工程により高純度シリコン単結晶を得る: "segregation" (不純物との)分離

検出器用高純度シリコン 但し結晶が弱いために大型化が難しい (15cm=6", 最近は20cm=8")

石英からの酸素の混入により純度に限界 =>磁場をかけて対流を抑制し混入を抑える 大型化(45cm=18"φ)主にIC用シリコン

位置測定(strip型):信号の流れ

位置測定(pixel型+):信号の流れ

R/O rate:100kHz

要求されたBCid に"hit"したchの アドレスを送信

運動量分解能-位置分解能の影響

クーロン多重散乱

・ 単に「測定点数Nを増やす」ではだめて

運動量分解能-多重散乱の影響

Monolithic pixel : Silicon-on-insulator

まれに発生するイベントを観測する 」アビーム輝度をさらに上げる 」でもっと多くの粒子が発生 位置分解能の向上だけで良いのか? 」で時間分解能にも優れた4D検出器

4D sensor - LGAD Low gain avalanche diode

 ΔT (leading pad, MCP) [ns]

-10.9

-10.8

-10.7

-10.6 -10.5

-10.4 -10.3

半導体検出器使用上の注意

- ✓ 製造時は不良品の原因となるのでクリーン度は重要 試験時の極端なクリーン環境は必要がないが、ダスト起因のトラブル(スパークとか)は発生する センサーの表面はSiO₂ または相当の "passivation"(不活性化膜)で覆われている (wire-bonding pads 等は除く)
- ✓ イオンが酸化膜にトラップされると絶縁性能が劣化する(HVがかからなくなったり).
 Na⁺ は典型的な人間起因のイオン(汗): Do not touch by hand
- ✓ MOS 構造の薄い絶縁膜は静電気に弱い: 触る前に静電気放電を
- ✓ 大きな暗電流を流しつづけると損傷: Limit the current (1mA is too high)
- ✓ 熱暴走に注意…: 適切な排熱系・冷却系が必要

素粒子実験:有用な技術は何でも使う

(1) シリコン検出器の良い点、悪い点を挙げよ

項目は箇条書きにし、必要な説明をそれぞれに記せ

(2)素粒子実験に用いるために、検出器にどのような工夫がなされてきたか例を挙げ説明せよ

