

Development an AC-LGAD sensor with fine time and spatial resolutions

<u>Koji Nakamrua</u>, Sayuka Kita^A^, Tatsuki Ueda^A^, Kazuhiko Hara^A^ KEK, U.Tsukuba^A^

29nd Mar, 2021

Motivation

Higgs discovery and measurement by LHC experiment

• <u>"Vacuum"</u>

- "Vacuum" is nothing? Filled by Higgs boson?
- How Higgs boson/field condensed to the "Vacuum"?
- Need to determine/observe the shape of Higgs Potential.

→Observe/measure "Higgs self coupling".

- <u>"Dark Matter/Energy"</u>
 - We only know 4%. What's the others?
 - Beyond the Standard Model?

Next generation of Collider experiment

- Need "Higher Luminosity" and/or "Higher Energy"
 - High Luminosity LHC (HL-LHC)
 - 20 times more data (~3000-4000fb⁻¹) at **14TeV**
 - Plan : Start at 2027
 - High Energy LHC (HE-LHC)
 - Use Super Conducting Magnet with Higher Magnetic field(16T)
 - **28TeV** collider in the same tunnel as LHC.
 - Future Circular Collider (FCC-hh)
 - Use Super Conducting Magnet with Higher Magnetic field(16T)
 - **100TeV** collider with 100km tunnel at CERN.
 - International Linear Collider (ILC)
 - 250GeV e+ e- collider in Japan

Inner Tracking system

Only way to solve this so far...

29nd Mar, 2021

Discussio

Discussion

Starteo

Future Semi-conductor Tracking Detectors

Mass spectrum for new particle

- Further finer pitch pixel detector \rightarrow Limited by front end Electronics (min : 50x50 μ^2)
 - In addition to spatial resolution, **Timing resolution helps!**

→New generation of Tracking detector should have timing information for all hits!

- Tentative Requirement
 - 30ps timing resolution
 - ~o(10)um spatial resolution (Pixel type).
 - (hadron collider) ~o(10¹⁶)n_{eq}/cm² radiation tolerance

Low gain Avalanche Diode (LGAD)

- Low gain Avalanche Diode (LGAD)
 - General n^+ -in-p type sensor with p^+ gain layer under n^+ implant to make higher Electric Field \rightarrow Good timing resolution.
 - 30ps timing resolution achieved already.
 - Next development
 - Finer electrode separation for spatial resolution

TCHoU symposium

beam

Detector with both spatial and timing resolution

- First prototype with 80um pitch strip (DC-LGAD) → Only 20% of active area has gain
- - Cross talk expected in the *n*⁺ implant \rightarrow Increase resistivity of *n*⁺ implant

First AC-LGAD by HPK

29nd Mar, 2021

TCHoU symposium

Parameter space for doping concentration

Lower Operation Voltage

Radiation tolerance

Measurement setup and signal observation

Lab setup

LV

HV

- Designed high speed amplifier board.
- Signal recorded by CAEN DT5742 digitizer
- ⁹⁰Sr β lay source

Collimator

Amp. board

Sensor

Scintillator / MPPC

BOX

Triggered by Scintillator (MPPC readout)

Scinti

TCHoU symposium

digitizer

Equivalent circuit for Signal readout

29nd Mar, 2021

Radiation Effect in LGAD sensor

- The same as general *n*⁺-in-*p* sensor
 - Bulk damage (NIEL) : Lattice defect.
 - Surface damage(TID) : Positive charge @ SiO₂-Si
- In addition to this "Accepter Removal"
 - *p*+ (Boron) accepter change to doner level

Doping Concentration

IV performance after irradiation

- Irradiated sensors at CYRIC (Tohoku university) with 70MeV Proton.
- Operation/Gain voltage get higher by irradiation (almost linearly)
 - Current sensor does not work after $1 \times 10^{15} n_{eq}$ /cm² fluence or more.

29nd Mar, 2021

Test beam in Feb 2021 @ Fermilab

Fermilab Test Beam Facility (FTBF)

120GeV proton beam

Strip Detector based Telescope : ~15um pointing resolution

Readout by Ocilloscope

LeCroy WR8208HD scope 12bit, 10GSa/s, 2GHz 8 channel

Timing reference Detector

PHOTEK

MCP photomultipliers (PMT140) 450ps FWHM with 5e3 Gain **~5ps timing resolution** (SPEC: Multi-photon jitter below 10 ps)

29nd Mar, 2021

Time resolution measurement @ testbeam

- Used PHOTEK : MCP PMT140 as a timing reference detector
 - Including 5ps PMT140 time resolution (<1% effect)

Very fresh results : Obtained 30-40ps time resolution for a couple of types of sensors

Efficiency and signal sharing @ testbeam

New samples (4 types of sensors)

29nd Mar, 2021

Summary and plan

backup

Photo

Leakage current vs Bias voltage

29nd Mar, 2021

Pulse Height and Bias Voltage dependence

Pedestal distribution is evaluated from off timing region

29nd Mar, 2021

How to reduce "Accepter Removal" effect?

Position dependent mean amplitude

C-2: more resistive

B-2: less resistive

29nd Mar, 2021

Radiation Tolerance

Radiation environment

- Expected radiation level for 4000fb⁻¹
 - Non Ionizing Energy Loss (NIEL):
 - 3^{rd} layer: 2.8x10¹⁵ n_{eq} /cm² 1st layer : 2.6x10¹⁶ neq/cm²
 - Total Ionizing Dose (TID) :
 - 3rd layer : 1.6MGy 1st layer : 19.8MGy *

Accepter removal

新型LGAD検出器(AC-LGAD)

- 電極の細密化が課題
 - 以前の検出器は80umピッチのストリップ型で有感領域 が20um程度
 - 各ストリップごとで増幅層が独立(大きくすると電場が不 安定)
 - AC-LGAD : 一つの増幅層で、AC電極を配置→n+のドー プ量を減らして抵抗値を高くしてクロストークを減らす。
 - →n+とp+のドープ量で増幅率が決まるので最適化が必要

29nd Mar, 2021

時間分解能の測定

- 二枚の同種のセンサーを上下に配置
 - 時間差分布の標準偏差: σ(T₁-T₂)=√(σ₁)²+(σ₂)²
 - 同種のセンサーなので: **σ**_t = **σ(T**₁-**T**₂)/√2

Timing resolution with certain threshold

Threshold voltage [V]

29nd Mar, 2021