Development of a large-area position-sensitive detector for the Rare-RI Ring at Riken

筑波大学

University of Tsukuba

UNIVERSITY OF

Saitama University

協王大学

G S]

RI Beam Factory at RIKEN

The Origin of the Solar System Elements

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

Gravitational Waves discovery

Neutron star mergers!

LIGO observatory in USA

Neutron is converted to proton via beta decay. Number of protons defines the element.

[How were heavy elements made ?] rapid neutron capture: r-process

The nuclear physics

Neutron is converted to proton via beta decay. Number of protons defines the element.

Nuclear binding energy

Specifications Circumference Betatron tune Momentum acceptance Transverse acceptance RI beam energy Revolution frequency

60.35m 1.21 / 0.84 ±0.5% 20π / 10π mm mrad 200 MeV/u 2.82MHz 2012 Construction started
2013 Completed
2014 Test of devices
2015 1st & 2nd commissioning
2016 3rd commissioning
2017 4th commissioning
2018 1st physics run
2020 Kicker upgrade

RI Beam Factory at RIKEN

Production of RI beam at RIBF

Sarah Naimi **14**

Mass measurement principle

Large area position-sensitive DL-E-MCP

Thin C-foil \rightarrow low energy loss

17

G. Hudson-Chang Master (Surrey Uni.)

Sarah Naimi

Z. Ge, PhD (IMP/Riken)

R. Crane Master (Surrey Uni)

Foil (Mylar:1um) << PPAC thickness (Mylar:10um) DL-MCP: Ø120mm ~ PPAC (240x150mm)

29 Mar. 2021 TCHoU workshop

29 Mar. 2021 TCHoU workshop

Before

X,Y [cm]

A,B [mrad]

Large area position-sensitive DL-E-MCP

New kicker magnets configuration

DL-E-MCP could be placed inside the kicker magnet to monitor emittance or just after

A copper mask is put in front of the foil to make sure PPACs and DL-E-MCP are aligned

	Jul19	Nov19	Oct20(1)	Oct20(2)
New wiring method	Х	О	О	О
Pitch of girds [mm]	1	2	1	1
Mirr Spacer [mm]	8	8	8	6
Acc Spacer [mm]	10	10	10	8
Acc. Potential [kV]	3	4	4	7

<u>Good position resolution</u> overall the large area:

- Homogenous electric field
- High acceleration voltage (less spread)

Homogenous electric field

- New wiring method (tighter wires and same tension)
- Smaller pitch

High acceleration voltage

• Changed acceleration and mirror spacers

	Jul19	Nov19	Oct20(1)	Oct20(2)
New wiring method	Х	О	Ο	О
Pitch of girds [mm]	1	2	1	1
Mirr Spacer [mm]	8	8	8	6
Acc Spacer [mm]	10	10	10	8
Acc. Potential [kV]	3	4	4	7

Pitch: distance between neighboring wires

Higher acceleration voltage leads to less spread and therefore <u>better resolution</u>. Spacer thickness is important to prevent discharge at higher voltage.

Voltage optimization method

Comparing two optimization methods

Precision of Method 1 (Zero Crossing) vs Method 2 (Minimised Sigma) with 8mm Mirror Spacer

Position resolution in Y improved for method 2 without compromising position resolution in x

Sarah Naimi **30**

29 Mar. 2021 TCHoU workshop

Planned improvement of position resolution

Compact

Test experiment planned July 2021 at HIMAC

G. Hudson-Chang Master (Riken/Surrey)

- **Goal:** Measure mass of n-rich nuclei beyond N=82 for r-process study
- **Challenge:** efficiency of the Rare-RI Ring should be increased.
- **Solution:** Large area thin-foil position-sensitive DL-E-MCP detector for in-ring diagnostics and reduction of mass uncertainty systematic.
- **Progress:** Position resolution less than 2mm relative to conventional detectors. Ideally it should be less than 1mm
- **Improvement:** Design of compact detector to reduce the spread and apply higher voltage. Digital DAQ for better signal processing (collab. Korea).

ありがとうございました

Thank you for your attention