

Preparation of pixel module production for the HL-LHC ATLAS ITk

Koji Nakamura (KEK) on behalf of ATLAS Japan Itk group

High Luminosity LHC (HL-LGC) -- schedule update

- High Luminosity LHC (HL-LHC) start in 2029 to take 10 times higher integrated luminosity (3000-4000fb⁻¹) in 10 years.
 - Center of Mass Energy will be 14TeV
 - Instantaneous luminosity after leveling is ~5x10³⁴cm⁻²s⁻¹
 - Requirement : No major degradation of performance upto 7.5x10³⁴cm⁻²s⁻¹ instantaneous luminosity with 200 multiple interaction per bunch crossing.

Inner Tracker (ITk) Layout

- Larger coverage area
 - Pixel : current 2.7m² → upgrade 8.2m²
 - Strip : current 34m² → upgrade 165m²
- Higher Forward coverage
 - Current $\eta < 2.5 \rightarrow$ upgrade $\eta < 4.0$
 - Better Pileup removal & background rejection
- For Layer 1-4, constructing Quad module
 - Size : 40mm x 40mm
 - Single sensor with 4 Front End ASIC bonded.

21 March 2022

Sensor and module design

• <u>Basic principle :</u>

- Backside is negative bias and n+ is ground.
- Detect electron-hole pairs created by ionizing energy loss from MIP particle.
- Strip detector
 - n+ can easily ground at the end of strip.
 - Readout usually via "wire bonding" strips to the readout ASIC.
- <u>Pixel detector</u>
 - Electrode placed two dimensionally.
 - To ground all pixels, high resistivity biasing grid is necessary. (important for testing sensor alone)
 - Readout ASIC is connected by "bump-bonding".

Our development is together with Hamamatsu Photonics K.K (HPK)

Flex assembly and CTE mismatch

- Module Flex assembly
 - To read signal from ASIC, Flex Printed Circuit (FPC) is glued to the module by Araldite 2011.
 - Cooling TPG/CFRP will attach to the backside of ASIC.
 - Then wire bond ASIC pad to FPC.
- CTE mismatch issue
 - Coefficient of Thermal Expansion (CTE) is different for silicon/copper/Carbon.
 - E.g. Silicon 2.6ppm/°C Copper 16.7ppm/°C
 - Huge bump stress during thermal cycling.
 - During 10 years operation, expected 400 times TC from -45°C to 40°C
 - Qualification : 100 cycle with -55°C to 60°C Temp range

This issue could be solved by "Parylene coating" of assembled module.

Schedule of Production

• Production has already started.

PDR : Preliminary Design Review FDR : Final Design Review PRR : Production Readiness Review

21 March 2022

Schedule of Production

• Production has already started.

PDR : Preliminary Design Review FDR : Final Design Review PRR : Production Readiness Review

21 March 2022

Delivery of HPK Pre-production sensors

- Delivered 124 good sensors by the end of Feb.
 - First 20 good sensors have been diced.
 - Remaining 104 sensor as wafer.
- In wafer :
 - 6 main quad sensor
 - 40mm x 40mm sensor for actual module
 - Test structure
 - Structure for quality assurance contains diodes, baby pixel, Strip and inter pixel capacitance structures.

21 March 2022

Main sensor – Visual inspection

- Visual capture
 - Example of a sensor with defect

TCHoU meeting

Metrology machine @ KEK

Took pictures of all 6 sensors. (without LED on)

Karin Kuramochi

TCHoU meeting

Test structure – Visual capture

- Not required but took high resolution picture.
 - Found that no-scratch mark in Test structure...
 - Made feed back to HPK and will be improved in production

21 March 2022

Test structure – IV/CV measurement

3.5-4.4 nA/cm²

21 March 2022

TCHoU meeting

D3

D5

ğ

20

Test structure – First CCE measurement

- Measured one of strip TS by Alibava setup.
 - Used ⁹⁰Sr source with scintillator trigger.

ADC dist, with time cut (34.0-48.0)

entries = 5197 y²/ndf = 96.8/89 LanWidth = 5.09 ± 0.32

 $LanMPV = 47.53 \pm 0.42$ Norm. = 5069 ± 94 GausSigma = 10.76 ± 0.92 Langau peak = 51.83

pixeltest 20220301.dat

- LandauMPV=47.53±0.42 ADC count ~8570±76 e
- Smaller than expected. (due to inter strip capacitance?)

Signal ADC

Wire bonded to PCB

Tatsuya Ishii

14

Time vs signal

Bump stress during thermal cycling

- CTE mismatch introduce stress to the Bump
- Checked bump connectivity after thermal cycle
 - Checked number of disconnected bumps as a function of number of cycle. (subtracted initial failure)
 - Additional 5 modules are tested to increase statistics.
 - No visible increase of bump delamination observed.

14

Irradiation test in March

- CYRIC@Tohoku Univ.
 - An irradiation facility with **70MeV proton beam** (~1μA beam current).
 - 3-5 hours for $3x10^{15}n_{eq}/cm^2$ irradiation with (600nA beam)
 - This allows 2-3 pixel modules with Al plate at the same time(3% E loss/module).
 - Operated at -15°C temprature with dry N₂ gas.
 - Scanning over full pixel surface at irradiation.
- We had irradiation beginning of this month 28th Feb 4th Mar)
 - Sensor Pre-production Quality assurance
 - Three main sensors and 4 test structures are irradiated.
 - Final module level testing before pre-production
 - Four modules are also irradiated
 - To check bump stress issue after irradiation
 - Especially Parylene performance after irradiation
 - One of 4 modules are irradiated with chip operation
 - We should know the radiation effect to the CMOS FET
 - Checked stability of regulator/reference voltage/ring oscillator

Some fresh results of module irradiation

- Irradiated module with proper cooling system.
 Kept module temp ~-15°C
- During irradiation chip was operated and measured various parameters.

TCHoU meeting

Ratic

^{Yuta} Hiemori

chip1_Vdd/

chip2 VddA

ーchip1_VddD -chip2 VddD

chip3 VddD

 $\sim 6.3 \times 10^{15} n_{\rm eq}/{\rm cm^2}$

Beam off

Regulator output voltage

Conclusion

Conclusion in November last year

- Pre-Production has started already
 - Production needs several parts to construct modules.
 - 7% of Sensor production as first important parts have available for quality check.
 - Pre-production for the other parts and assembly start soon.

JFY2022 will be busy year for full pre-production and assembly

21 March 2022

backup

21 March 2022

Thermal Cycle after irradiation

- Only one module has performed thermal cycle after irradiation so far.
 - The number of disconnected bump have not increased after TC
 - The result confirmed Parylene coating effect is not changed even after irradiation.

Need to increase statistics of the test.

Irradiation at CYRIC (28th Feb-)

Irradiation samples

- Test structure (2x 2e15 and 2x 5e15)
 - 2x10¹⁵ : w5-TS-P2, w7-TS-P2
 - 5x10¹⁵ : w1-TS-P2, w3-TS-P2
- Main Quad sensor (3x 5e15)
 - 5x10¹⁵ : w7-P1, w7-P2 and w7-P3

- 3D Test structure (2x 1e16 and 2x 1.7e16)
 - 1x10¹⁵ : w9-PCM117, w13-PCM117
 - 1.7x10¹⁵ : w9-PCM634, w13-PCM634
 - 3D Single sensor (2x 1.7e16)
 - 1x10¹⁶ : w9-I34, w13-S22
 - 1.7x10¹⁶ : w9-P43, w13-U42

No way to handle without touching surface soft UBM... Glued to PCB.

Irradiated successfully except 2x10¹⁵ Test structure
 ▶ Irradiation box broken and couldn't continue irradiations.

Complex will be ready to pickup around 22nd March

Samples will be ready to pickup around 22nd March

21 March 2022

Itkpix-v1.1 irradiation with chip operation

• Cooling

- In previous irradiation we observed rapid temperature ramp when chip LV turned on. \rightarrow LV off after measurement.
- Better cooling system has been developed and successfully operated with [-15,-10]°C temperature range!

21 March 2022

MUX monitoring and Ring Oscillator frequency

- VDDD/A rising due to Vref change.
- RO frequency going down. (50MHz/500Mrad)
 - C.f. in Xray irrad (about twice reduction..)
 - Quite consistent to what Maria saw in Birmingham irradiation.

21 March 2022

Pick up

- Picked up all Test structures from w1, 3,5 and 7.
- Picked up all Quad sensors from w7.
- All are stored to gel-packs

21 March 2022

Shipment TS to testing institutes

- each gel-pack contain P1,P3,P4
 - To Goettingen : w5-P1,P3,P4
 - To Dortmund : w1-P1, P3, P4
 - To IJC lab : w7-P1, P3, P4
 - Keep one at KEK : w3-P1, P3, P4

Main sensor – Thickness and bow

- Thickness
 - Hight measurement with Vacuumed chuck on
 - Take average of height for points scanned with 2mm steps (2D)

Matching to Specification : 150±15um

- Bow
 - Hight measurement without
 Vacuumed chuck on

Height differences are 20-35um after slope correction

Not within <25um specification(?) \rightarrow may be ok since FC by HPK

21 March 2022

bow measurement results (height diff in um)

	Q1	Q2	Q3	Q4	Q5	Q6
Max – top right	22.1	34.1	31.4	31.3	27.3	32.7
Max – bottom right	18.2	26.4	23.3	22.5	28.2	22.4
Max – top left	28.7	31.9	33.8	32.8	39.5	33.9
Max – bottom left	29.2	31.7	27.1	26.8	28.4	25.5