J-PARC E16 EXPERIMENTS - LOW-MAS E+E- MEASUREMENTS WITH DETECTOR CHALLENGES-

Kyoichiro Ozawa(KEK/J-PARC, Tsukuba Univ.)

J-PARC E16 experiment Spectrometer and detectors Status of pilot data analysis Summary

PHYSICS: HADRON MASS AND QCD MEDIUM

A SPECTROMETER FOR E+E- MEASUREMENTS

φ meson mass spectra are measured by e⁺e⁻ decay modes
p + A → ρ/ω/φ → e⁺e⁻
Construct a spectrometer for e⁺e⁻ measurements

Gas Electron Multiplier (GEM)

Schematic view of the spectrometer

WHAT IS GEM?

A Micro Pattern Gas Detector (MPGD Electro nodes on both sides of a foil insulator, which has small holes

F. Sauli, Nucl. Instr. and Meth. A386(1997)531

TYPICAL GEM: 50 μm Kapton, 5 μm Copper 70 μm holes at 140 μm pitch

2022/03/22

GEM TRACKER

- Ionization electrons in the drift gap are collected and amplified by GEMs.
- 2D strip readout
 - X: 350um pitch
 - Y: 1400um pitch
- Three Trackers
 - 100 cm²
 - 200 cm²
 - 300 cm²

2-D STRIP READ OUT

Blind Via Hole type

PI-removed type

"MINI TPC" LIKE ANALYSIS

Performance test is done for prototype detectors

In the test, we develop a new analysis method to improve a position resolution using Both position and timing information

Residual sigma vs Incident angle

TRIGGER SIGNAL FROM A GEM FOIL

CONSTRUCTION OF GEM TRACKER

GEM Foil check

GEM Assemble

GEM Trackers

GEM Trackers@Spectrometer

HADRON BLIND DETECTOR

It is originally proposed by G. Charpak and realized by the PHENIX exp.

CSI PHOTO CATHODE

CsI Photo cathode evaporated by myself

CsI: Sensitive wave lengths are in ultra-violet region Suitable for Cherenkov radiation

Evaporation on a GEM Foil ~350nm thickness Prototype: 100 mm² @ RIKEN Actual model: 300 mm² by Hamamatsu

MEASUREMENTS OF QUANTUM EFF.

GAS VESSEL FOR HBD

Gas Tightness is essentially important, since CsI has a strong deliquescency

O₂: < 2 ppm H₂O: < 10 ppm を実現

2022/03/22

Size of GEM foil

PERFORMANCE TEST WITH A BEAM

Performance test is done for a proto-type

K. Kanno et al., NIM A819(2016)20

CONSTRUCTION OF ACTUAL DEVICE

Detectors

Assembly at RIKEN

Install works

WE HAVE A PILOT RUNS IN THE LAST YEAR

2022/03/22

SNAP SHOTS OF PILOT DATA ANALYSIS

Gas Cherenkov Counter performance

SUMMARY

We developed and constructed new detectors for measurements of vector meson mass spectra in nucleus by electron-positron decays.

Gas Cherenkov detectors and Trackers based on GEM technologies are constructed

We have carried out evaluations of detector performance using a prototype detector and test beams. Enough performances are obtained for the experiment.

Pilot data are collected in the last year and analysis of pilot data is on-going.

2022/03/