FoCal Project in ALICE

Yota Kawamura for the ALICE FoCal collaboration TCHoU workshop 2018/3/15

Introduction of FoCal Project

Motivation

- Detector design
- The result of past test beam
 (2014~2016)

+ Activity in 2017

- Production of new Si detector
- Test beam at ELPH
- + Summary

FoCal project

ALICE detector

LHC

+FoCal : Forward Calorimeter

... Electromagnetic calorimeter installed in the forward direction (3.3 <η <5.3)

+ALICE upgrade plan

->Install finished machine in 2024 (LS3)

Experimental verification

of CGC by direct photon measurement

FoCal in ALICE detector

Nuclear form before nuclear collision ...

Model "Color Glass Condensate(CGC)" ... the saturation of gluon

Access to information in the initial stage of collision

..Low x , that is at high energy and forward region

TCHoU workshop 4

Direct Photon measurement

Required performance

simulation by GEANT4

- 1, high position resolution enough to separation γ/π0
 2, energy measurement with wider dynamic range
 - HGL(high Granularity Layer)
 High position resolution (MAPS detector)
 LGL(Low Granularity Layer)
 Energy measurement (PAD detector)

FoCal design

Si/W sandwich constructer

W: Absorber

 $1X_0 = 3.5 \text{ mm}(1 \text{layer})$ $R_M = 9.3 \text{ mm}$

2 types of Si sensor

 LGL(Low Granularity Layer) Si Pad

 $1Pad = 1 \times 1 \text{ cm}^2$ $1layer = 64 \text{ Pads}(8 \times 8)$ Energy measurement

2. HGL(High Granularity Layer) Monolithic Active Pixel Sensors

(MAPS)

 $\begin{array}{l} 1 \text{pixel} = 30 \ \times 30 \ \mu \text{m}^2 \\ \text{digital readout} \\ \text{High position resolution} \end{array}$

LGL

University of Tsukuba

Utrecht Univ.

HGL

Performance evaluation of the prototype

Test beam at CERN SPS in 2016

✓Take data up to 130GeV✓Energy resolution 15%

- Test beam ORNL (Oak Ridge National Laboratory) prototype until 2014~2016
 - next.. MIP measurement and more wider dynamic range Improve energy resolution

Activity in 2017

+Trial in this year...

Production new prototype

(The first attempt of Japan FoCal group)

Ongoing

Evaluation of basic characteristicsSi-Pad Design optimization

Si detector production
 Test beam (at Tohoku univ. ELPH)
 MIP ~ Low Energy measurement

1ch monitor PD for basic characteristics test

Si detector (8×8 ch)

Production

Si PAD made by Hamamatsu 1cm² Pad size 8×8 cell

Bonding machine

Double-sided adhesive tape

Flexible printed circuits

Picture when boning

Comple !

Bias circuit and read line to each cell, GND connect with silicon with wire of several 10 µm thickness

Readout System

APV25(CERN RD51)

readout chip preamp, shaper 128 ch : output Sampling frequency:40MHz 5Gains: 80,90,100,110,120%

SRS(Scalable Readout System) (CERN RD51)

ADC Board:12bit 16ch ADC 128×16 = 2048ch FEC Board: front-end Control of digital information by FPGA on FEC UDP communication by GbE

 \bullet

Front end

Data taking

TCHoU workshop 10

- **+**Date: December 15 22 at ELPH in Tohoku University
- +800 MeV/c e⁺ beam
- **+**Generate beam trigger with coincidence of three scintillator
- Place 3X₀ tungsten plates in front of the detector to raise a shower (take data with W on and off)

Result MIP response

+ 1 Pad ADC distribution

 Tevents that two electrons, three entered in Pad, can also be observed (peak is proportional to number of electron)
 Consistent with GEANT4

Characteristics of each channel

MIP ADC channel as a function of ch

+Without tungsten : beam behave as MIP

+Variation < 10 %

(Pad and electronics characteristics ?)

+Signal is smaller at the edge

-> Because of dark current ?

or signal attenuation due to wiring length ?

Efficiency

• Efficiency = hits / entries hit .. Number detected by pad entries .. Number detected by the trigger

'efficiency(=hits/entries)

- Ch72 only->89 %
- •9PADs->94 %
- •25PADs->96 %
- •49PADs -> 97 %
- •64(all)PADs -> 97%

number of hits

Total efficiency is about 97% ...The beam is not narrowed down to 1 channel

+ FoCal project

..Electromagnetic calorimeter scheduled to be installed in front of ALICE detector Silicon Detector production for the first time ELPH test

- Successful observation of MIP signal
- the variation of PAD < 10 %
- efficiency 97 %

Next..

Production of prototype for real machine by increasing the layer of silicon as a calorimeter

+Dynamic range expansion to enable observation of high particle energy in the forward direction

Thank you very much for your attention !

back up

+APVのサンプリング周波数40MHz(25nsec)ごとにAPV128 ch分の波高をADC にして読み出す

1MIPの分布

(Wを置かない場合のデータ)

Energy Dependence

Longitudinal shower growth

