Development of ATLAS Pixel Detector for the HL-LHC

University of Tsukuba

Junki Suzuki

2018/3/27

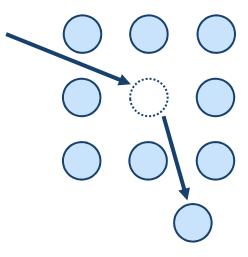
TCHOU SYMPOSIUM

Overview

- Introduction
- High luminosity LHC
- Radiation damage in silicon detectors
- New Pixel detector for HL-LHC
 - Detectors for HL-LHC
 - Planner pixel sensor
 - Biasing structure
- Summary

Introduction

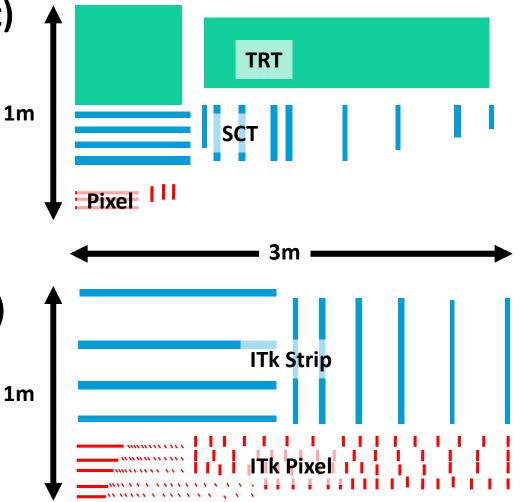
- ☐ High Luminosity LHC (2026)
- Instantaneous luminosity: 7.5 × 10³⁴ cm⁻²s⁻¹
- Integrated luminosity : 3000 fb⁻¹
- Radiation damage: 1 × 10¹⁶ 1MeV n_{eq}cm⁻²
- Number of interaction : ~200 per crossing
- Increase Radiation damage and Pile-up
- How can we maintain physics performances?
 - Radiation Tolerance
 - Fine Pixel
 - High speed readout
 - Trigger logic upgrade


New Silicon Tracker (ITk Pixel and ITk Strip)

are needed.

Radiation damage in Si detectors

- Bulk damage
- Main effect for Si sensors
- Collision with particles make defects
- → Many exogenous level will be created
- Defect's effect
- Increase p-type impurity
- → Higher depletion voltage
- Recombination center
- → Noise, leakage current
- Trapping center
- → Charge Collection Efficiency

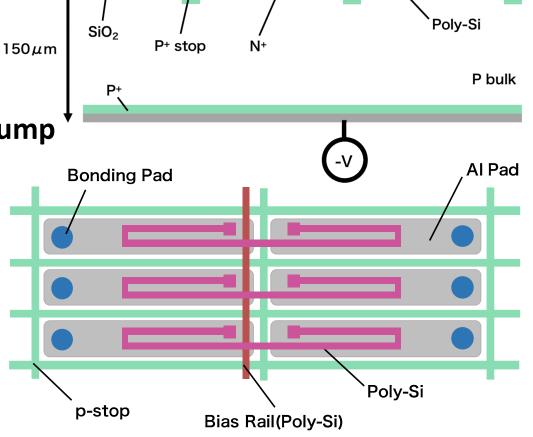


Detectors for HL-LHC

- Inner Detector (current)
 - Detector is composed of
 - ✓ Pixel → Silicon
 - ✓ TRT } Gas
 - Silicon area : ~65m²
 - Channel : ~100M
- Inner Tracker (upgrade)
 - Detector is composed of
 - ✓ ITk Pixel
 ✓ ITk Strip
 - Silicon area : ~200m²
 - Channel: ~5G

Cost is very important point

Planner Pixel Sensor

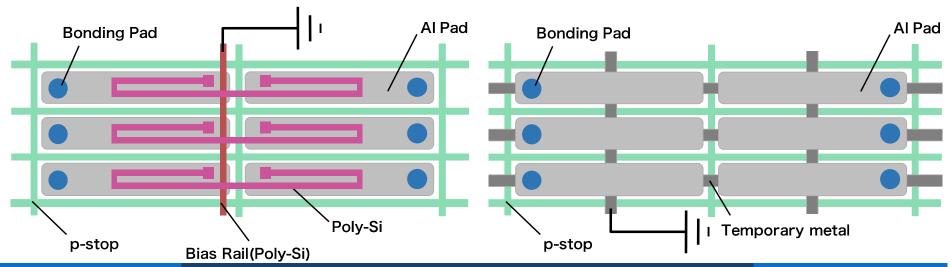


Before FC

Al Pad

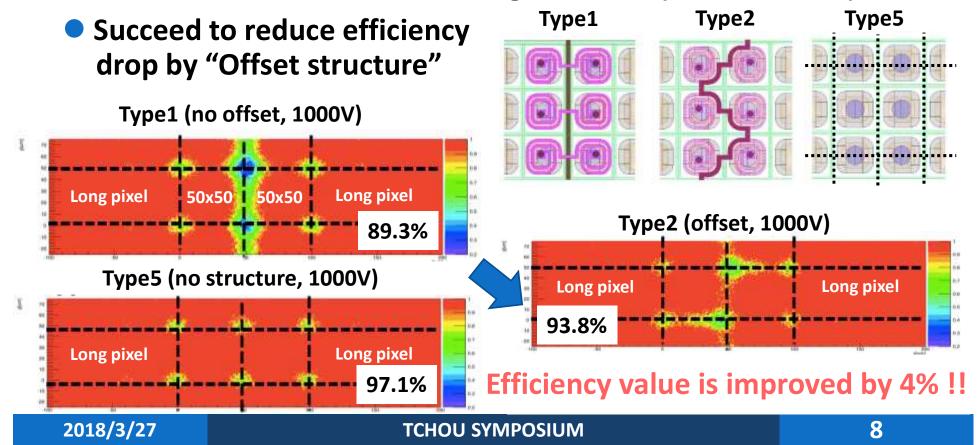
ASIC

- □ n⁺-in-p pixel sensor
 - Implanting n⁺ into p-type Si
 - Lower costs
 - Radiation tolerance up to ~3 × 10¹⁵ 1MeV n_{eq}cm⁻²
 - No type inversion
 - Bond to ASIC with metal bump
- Device structure
- Pixel Size
- \rightarrow 50 × 50 or 25 × 100 μ m²
- → One of the most smallest planner hybrid sensor
- Biasing Structure


After FC

SnAg Bump

Biasing structures


- □ IV-testing before bump-bonding
 - Cost of bump-bonding is quite high (accounted for ~50%)
 - IV-testing before bump-bonding is important for good yield
 - → Need to set all pixel GND for biasing
- How can we do? two choices
 - Temporary metal : Metal structure (will be etching), high costs
 - Bias rail: High resistivity Poly-Si rail, radiation damage issue

Bias rail structure

- Efficiency drop after irradiation
- Typical efficiency drop observed at under biasing structure
- → Changing concentrations of impurity and charge collection field
- → Some carrier induced on biasing structure (not electrode)

Summary

- Development of ATLAS pixel detector
 - ATLAS Inner detectors will be replaced with new silicon detectors for higher luminosity experiment.
 Need to maintain physics performance in high luminosity environment.
- We are developing finer pixel, with lower cost and higher radiation tolerance detector.
- Low cost can be materialized by IV-testing before bumpbonding.
- Biasing structures are needed. Efficiency drop of 3%(no-bias), 4%(with bias structure) is observed after irradiation.