

Tevatron – Bottom cuark

Hideki Miyake, University of Tsukuba, on behalf of CDF and DØ collaborations

KEK-PH2010, Feb.18th,2010, Tsukuba,Japan

Introduction

Tevatron as "Hadronic" B-factory
See Y.Takeuchi's talk for Higgs/top

Rich B programs are on-going Cover a part of Tevatron B-physics Rare decay (BR, A_{FR}) **B** \rightarrow K^(*)μμ, B_s \rightarrow φμμ, B_(s) \rightarrow μμ, and B_s \rightarrow φφ \Box CP violation (β_{c}) □ Βͺ→J/ψφ В hadron (BR, mass, т, and polarization) $\Box \Delta_{\rm b}, \Omega_{\rm b}, Y(1s)$ don't cover... $B_s \rightarrow hh$, Charm mixing and so on

H.Miyake

production@Tevatron

Pros

0

000

H.Miyake

Enormous cross-section
 All species of b-hadrons
 B_u,B_d,B_s,B_c,Λ_b, Σ_b...

8 Cons

- **QCD** background x10³ larger than σ(bb)
- Collision rate ~2MHz
 - → tape writing limit ~100Hz
 - Sophisticated triggers are very important!

Tevatron B-production enables :

- explore various rare decays
- measure precise CPV parameters
- study wide mass range of b-hadrons

Tevatron pp̄ collisions at √s=1.96 TeV >6 fb⁻¹ data on tape for each experiment Recovery from shut down is in good status Today we cover 2.8~5fb⁻¹ analysis

Tevatron Experiments

CDF II Detector

- Central tracking:
- silicon vertex detector
- drift chamber

→ excellent vertex, momentum
 and mass resolution
 - Particle identification: dE/dX and TOF

- Electron and muon ID by calorimeters and muon chambers

DØ Detector

- Excellent tracking and muon coverage
- Excellent calorimetry and electron ID
- Silicon layer 0 installed in 2006 improves track parameter resolution

H.Miyake

Flavor Changing Neutral Current ► b→s FCNC

Promising tool to search for new physics

- Tree diagram is forbidden in the SM
- May occur via higher order loop diagram
- NP could enhance the amplitude
 Interference with SM amplitude
 - Various observables are available
 BR, K* polarization, and A_{FB}

$B \rightarrow K(*) \mu \mu, B_s \rightarrow \phi \mu \mu$

Rare decay : b\rightarrowsll B⁺\rightarrowK⁺\mu^{+}\mu^{-} : [0.52^{+0.08}_{-0.07}]×10⁻⁶ (HFAG)

B⁰→K^{*0}µ⁺µ⁻:[1.05^{+0.15}_{-0.13}]×10⁻⁶ (HFAG)

 $B_s \rightarrow \phi \mu^+ \mu^-$:1.61×10⁻⁶ (C.Q.Geng and C.C.Liu, J.Phys.G29:1103-1118,2003)

 BR(B_s→ φµµ)/BR(B_s→ J/Ψφ)
 €

 <2.3(2.6)×10⁻³ @90(95%) C.L. CDF 0.92fb⁻¹
 €

 <4.4×10⁻³ @95% C.L.
 DØ 0.45fb⁻¹
 €

 ✓ CDF updated the analysis with 4.4fb⁻¹
 €
 €

 ✓ BR
 A_{FB}
 KEKPH2010,Tsukuba, Feb.18th, 2010

B→K(*)µµ : yields

Dimuon trigger (p_T(μ)>1.5 or 2.0GeV/c)
 Employ neural network to optimize event selection
 Single final state per decay channel

 B⁺→K⁺μ⁺μ⁻
 B⁰→K^{*0}(→K⁺π⁻) μ⁺μ⁻

$B \rightarrow K^{(*)}\mu\mu$: BR

Relative BR : normalized BR by control channel (J/Ψh)

Rare channel yield

$$\frac{\mathcal{B}(B \to h\mu^+\mu^-)}{\mathcal{B}(B \to J/\Psi h)} = \frac{N_{h\mu^+\mu^-}^{\rm NN}}{N_{J/\Psi h}^{\rm pre}} \frac{\epsilon_{J/\Psi h}^{\rm pre}}{\epsilon_{h\mu^+\mu^-}^{\rm pre}} \frac{1}{\epsilon_{h\mu^+\mu^-}^{\rm NN}} \times \mathcal{B}(J/\Psi \to \mu^+\mu^-),$$

Control channel yield Reconstruction efficiency

Absolute BR

(x10⁻⁶)

h=K,K*

		BaBar (384M BB)	Belle (657M BB)	CDF (4.4fb ⁻¹)
	К⁺µµ	0.41 ^{+0.16} -0.15(stat)±0.02(syst)	0.53 ^{+0.08} -0.07 (stat)±0.03(syst)	0.38±0.05(stat)±0.03(syst)
	K* ⁰ μμ	1.35 ^{+0.40} -0.37(stat) ±0.10(syst)	1.06 ^{+0.19} -0.14(stat) ±0.07(syst)	1.06±0.14(stat)±0.09(syst)
	KII	0.39±0.07(stat)±0.02(syst)	0.48 ^{+0.05} - _{-0.04} (stat)±0.03(syst)	Same as K⁺µµ
	K*II	1.11 ^{+0.19} -0.18(stat)±0.07(syst)	1.07 ^{+0.11} -0.10(stat)±0.09(syst)	Same as K ^{*0} µµ
	NO REPORT	PRL102:091803 (2009)	PRL103:171801 (2009)	
		The best measurement for single final state!		
Kπ, K _s π, Kπ ⁰ }*{ee, μμ} {K, K _s }*{ee, μμ}				

H.Miyake

$B \rightarrow K^{(*)}$ µµ: differential BR

Dimuon mass spectrum could show a hint of new physics \rightarrow appears on differential BR w.r.t. q²

where $q^2 = M_{\mu\mu}^2$

 \rightarrow six q² bin (same definition as Belle)

SM maximum allowed SM minimum allowed

A. Ali, P. Ball, L. T. Handoko and G. Hiller, Phys. Rev. D61, 074024 (2000)

Consistent with SM
Consistent and competitive with BaBar and Belle

- BaBar, PRL102:091803 (2009)
- Belle, PRL103:171801 (2009)

H.Miyake

B, rare decay : B, $\rightarrow \varphi \mu \mu$ Similar analysis as $B \rightarrow K^{(*)} \mu \mu$ $B_s \rightarrow \varphi (\rightarrow K^+ K^-) \mu^+ \mu^-$

Stat. significance ~6σ **1st observation!** BR(B_s→φμμ) =[1.44±0.33(stat)±0.46(syst)]×10⁻⁶ Consistent with theory ~1.61×10⁻⁶

The rarest B_s decay we observed so far!!

Yet another B→VII decay
 Could measure φ polarization : F_L

Brand-new probe!

H.Miyake

Forward-Backward Asymmetry

Forward-Backward Asymmetry :

$$A_{\mathsf{FB}}(q^2) \equiv \frac{\Gamma(q^2, \cos\theta_{\mu} > 0) - \Gamma(q^2, \cos\theta_{\mu} < 0)}{\Gamma(q^2, \cos\theta_{\mu} > 0) + \Gamma(q^2, \cos\theta_{\mu} < 0)}$$

where $q^2 = M_{\mu\mu}^2$

A_{FB} may show drastically different behavior under some BSM scenarios →Good probe to explore BSM!

In case of Kµµ, A_{FB}(Kµµ)~0 is expected

H.Miyake

KEKPH2010, Tsukuba, Feb. 18th, 2010

13

$B \rightarrow K^{(*)}uu$

$A_{EB}(B \rightarrow K^{(*)}\mu\mu)$

- Consistent and competitive with best B-factories results: BaBar 384M BB, PRD79,031102(R) (2009) and Belle 657M BB, PRL103,171801(2009)

- Consistent with the SM and a BSM expectation...

$(B \rightarrow K^{(*)}\mu\mu)$

Expect world-leading result by end of this year:

- doubled sample
- additional triggers
- exploit more decay channels

Further reach if Run II extended to 2011

There is much room for improvement!

$\begin{array}{c} B_{s,d} \rightarrow \mu \mu \\ Highly suppressed in the SM \end{array}$

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.6 \pm 0.3) \times 10^{-9}$ $\mathcal{B}(B_d^0 \to \mu^+ \mu^-) = (1.1 \pm 0.1) \times 10^{-10}$

A. J. Buras, arXiv:0904.4917v1

Enhanced in NP (up to 100x)

- Tree level:
 - R parity violation in SUSY
- Loop level:
 - MFV SM extensions such as 2HDM
 - MSSM
 - **BR(B**→μμ) (tanβ)⁶

✓Current world's best upper limit: ✓BR(B_s→µµ)<4.7(5.8)x10⁻⁸ ✓BR(B_d→µµ)<1.5(1.8)x10⁻⁸ 90(95)% C.L.

PRL 100,101802 (2008)

KEKPH2010, Tsukuba, Feb. 18th, 2010

H.Miyake

Utilize neural network to optimize event selection

Similar analysis method as CDF Utilize Boosted Decision Tree

H.Miyake

 \checkmark

$B_s \rightarrow \mu\mu$: prospects

H.Miyake

$B_{s} \rightarrow \phi \phi$: gluonic penguin

Dominated by $b \rightarrow sss$ (same as $B \rightarrow \phi K^{(*)}$)

BR is sensitive to NP due to the loop diagram

Previous result: (1.4^{+0.6}-0.5[±]0.6)x10⁻⁵ by 8 signal@180pb⁻¹

Various BR expectations

- **QCDF:** (2.18±0.1^{+3.04}_{-1.78})x10⁻⁵ NPB774,64 (2007)
- pQCD: (3.53^{+0.83}-0.69^{+1.67}-1.02)x10⁻⁵ PRD76,074018 (2007)

 $BR(B_s^0 \to \phi \phi) = [2.40 \pm 0.21(stat) \pm 0.27(syst) \pm 0.82(BR)] \cdot 10^{-5}$

- Updated by 2.9fb⁻¹ from 180pb⁻¹~significant improvement
- BR: Consistent with SM

Next step: Polarization measurement

H.Miyake

CP Violation in B. System

- Analogously to the neutral B⁰ system, CP violation in B_s system occurs through interference of decays with and without mixing:

 $\rightarrow J/\Psi \Phi @ 2.8 fb^{-1}$

CDF β_s result@2.8fb⁻¹

CDF note 9458 (2.8fb⁻¹) PRL100,161802 (2008) (1.35fb⁻¹)

SM p-value=7%

Observe deviation from SM β_s of 1.8 σ

H.Miyake

KEKPH2010, Tsukuba, Feb. 18th, 2010

25

DØ β_s result@2.8fb⁻¹

Update from published result - Remove constraints on strong phases δ_{\parallel} , δ_{\perp} - Include systematic uncertainties to Δm_s

$$-2\beta_s^{J/\psi\phi} = \phi_s$$

H.Miyake

Tevatron combination

DØ note 5928, CDF note 9787

Combined likelihood finds 2.1σ deviation from SM

Works on new data/methods are ongoing

H.Miyake

H.Miyake

Bottom baryons

Our knowledge of b-hadrons greatly expanded in the last a few years

- **2006** $\Sigma_{b}^{(*)+}$ and $\Sigma_{b}^{(*)-}$ **2007** Ξ_b⁻
- 2008 Ω_b⁻

H.Miyake

KEKPH2010, Tsukuba, Feb. 18th, 2010

29

р

π

SVX

 Ξ^{-}/Ω^{-}

μ

 $\Xi_{\rm h}^{-}/\Omega_{\rm h}^{-}$

Primary Vertex

D0 observes $18\Omega_{\rm h}$ (15 $\Xi_{\rm h}$) signals@1.3fb⁻¹ Mass: 6165±10±13 (5774±11±15) MeV/c² PRL101,232002 (PRL99,052001) CDF observes $16\Omega_{\rm b}$ ($66\Xi_{\rm b}$) events@4.2fb⁻¹ π^{-}/K^{-} Mass: 6054.4±6.8±0.9 (5790.9±2.6±0.8) MeV/c² Lifetime: 1.13^{+0.53}-0.40[±]0.02 (1.56^{+0.27}-0.25[±]0.02) ps arXiv:0905.3123

 Ξ_h mass: agreement $\Omega_{\rm h}$ mass: disagreement We need more data/channel!

$\Lambda_{b} \rightarrow X_{c} n \pi \rightarrow \Lambda_{c}^{+} \pi \pi^{+} \pi^{-}$

Charm resonant decay channel

DECODE Observed resonant semileptonic decay channel: $\Delta_b \rightarrow X_c(\pi) \mu v$

PRD 79, 032001 (2009)

First observation of $\Delta_b \rightarrow \Delta_c^+ \pi^- \pi^+ \pi^-$

polarization

H.Miyake

polarization : result

CDF measures Y(1S) at 2.9fb⁻¹ while
 D0 measures Y(1S) and Y(2S) at 1.3fb⁻¹

- Disagreement with NRQCD
- Different trend between CDF and D0
 - No reason to differ...BG polarization?
- Further test with 2x data and other Y(nS) and Ψ(nS)
- Expect D0 result for J/Ψ soon

H.Miyake

Summary

Various B-programs on-going at Tevatron FCNC (BR, A_{FB}) CPV (β_s) B-hadrons (BR, mass, life time) Doubled data expected and more if Run II extended to 2011

H.Miyake

B triggers

Di-Muon

- Conventional trigger at hadron collider
- Wide mass range

Sillicon Vertex Trigger: SVT

Online selection of displaced tracks using SVX
UNIQUE at hadron colliders

1-Displaced track + lepton (e, μ) 120 μm < I.P.(trk) < 1mm $P_{T}(lepton) > 4 \text{ GeV}$ Semileptonic modes 2-Displaced tracks PT(trk) > 2 GeV 120 μm < I.P.(trk) < 1mm $\Sigma p_T > 5.5 \text{ GeV}$ fully hadronic modes

36