Far-Infrared source R&D

福井大工,中部大工A,筑波大数理B,福井大遠赤セC,

○<u>廣瀬龍太</u>, 吉田拓生, 加藤圭騎,岡島茂樹^A, 中山和也^A, 金信弘^B, 武内勇司^B, 笠原宏太^B,市村龍哉^B,奥平琢也^B,森内航也^B,先崎 蓮^B,小川勇^C,

ニュートリノフロンティア 2014年 12月23日

ニュートリノ崩壊現象

ニュートリノ崩壊のファインマン図

γ(neutrino decay photon)

m ₁ (meV)	$egin{array}{c} m_2 \ (\mathrm{meV}) \end{array}$	m ₃ (meV)	E_{γ} (meV)	波長 λ (μm)
0	8.7	50	24	51
24	36	61	20	62
70	71	87	14	89

- ・ニュートリノ振動実験等により質量二乗差が 測定。しかしニュートリノの質量の値は未知 ⇒ニュートリノ振動実験に着目
- ·ニュートリノ崩壊光子のエネルギー E_{γ}

$$E_{\gamma} = \frac{m_3^2 - m_2^2}{2m_3} \equiv \frac{\Delta m_{32}^2}{2m_3}$$

(二体崩壊なので E_{γ} はmonochromatic)

- • $m_1=0$ meV, $m_2=8.7$ meV, $m_3=50$ meVと仮定すると $E_{\gamma}=24$ meV($51~\mu \mathrm{m}$)
- \rightarrow 本研究では E_{γ} =14~24 meV(λ =51~89 μ m) 付近の光(遠赤外領域)と予測し探索を行う

STJ検出器(Superconducting Tunnel Junction)

STJ検出器

- ・遠赤外領域の光子のエネルギー 測定に有望
- ・崩壊光子を検出しニュートリノ質量を 精度良く測定することが可能
- ・STJ検出器のエネルギー分解能

超伝導体 材質	エネルギー ギャップ Δ	エネルギー 分解能@24meV
Nb	$1.55 \mathrm{meV}$	14.8%
Al	$0.172 \mathrm{meV}$	4.9%
Hf	0.021meV	1.7%

Δ:クーパー対を壊すのに必要なエネルギー 小さいほど電子が多く出て統計精度が良くなる

現在開発中のSTJ検出器の性能評価実験が必要

⇒ 本研究の目的:性能評価実験に用いる光源の開発

性能評価実験に用いる光源

福井大学遠赤外線領域開発センター 遠赤外分子レーザーシステム 中部大学 岡島研で開発

STJ検出器性能評価実験

ニュートリノ崩壊光子のエネルギー E_{γ} = 14~24 meV $(\lambda = 51 \sim 89 \ \mu \text{ m,})$ を カバーする光源が必要

福井大学遠赤外線領域開発センター遠赤外分子レーザーシステム

- ・アルコールガス(CH₃OHなど)をCO₂レーザー で励起させ、遠赤外分子レーザーを発振
- ・遠赤外分子レーザーは連続波
- •発振波長: 40~500μm(*E_γ*: 2.5~31meV,

周波数: 7.2~0.6 THz)の間 の約70本の単色

発振線から任意の一つを選択可

レーザーシステムがカバーする波長領域

遠赤外分子レーザーシステム模式図

遠赤外分子レーザーの稼働テスト

Set up

・テストで発振させる分子レーザー [分子: CD₃OH 波長:52.9 μ m(設計値)]

稼働テスト結果

- ・共振器長がレーザーの半波長の 整数倍毎に共振
- -ピーク間の距離を2倍して λ を 計算 λ =52.9μm
 - ⇒設計値通りの波長が発振

遠赤外レーザー発振線の例(74本の設計値の一部)

	使用する 分子	CO ₂ 発振線	CO ₂ 出力 (W)	波長 (μm)	光子のエネルギー (meV)	出力 (mW)
>	CD ₃ OH	10R(18)	(89)	43.7	28.4	(6)
>	CD ₃ OH	9R(34)	57 (63)	52.9	23.5	4.2 💥
>	CH_3OD	9R(8)	(138)	57.2	21.7	(1.6W)
>	CD_3OH	10R(16)	(99)	86.4	14.4	(25)
	CH ₃ OH	9R(10)	(83)	96.5	12.9	(68)
>	CH ₃ OH	9P(36)	(148)	118.8	10.4	38
	CH ₂ DOH	10P(26)	(110)	150.6	8.2	(24)
>	CH_3CN	9R(16)	(107)	453.4	2.7	(0.4)
→は稼	受働テスト済みの発	法	1		()内は設計値	

遠赤外分子レーザーはニュートリノ崩壊光子のエネルギー E_{γ} =14~24 meV (λ =51~89 μ m)を充分カバー ⇒性能評価実験に用いることが出来る

回転ミラーによる連続波分子レーザーのパルス波への変換

分子レーザーパルス化実験

- ・光信号に対する検出器の応答を評価 遠赤外レーザーのパルス化が必要
- ⇒回転ミラーでパルス化(目標時間幅1µs)
- ・反射したレーザー光が検出器を通過 した際パルス信号として検出
- ・パルス時間幅はミラーから検出器までの 距離+ビームスポットサイズで決まる (回転ミラーの角速度は3600rpmで一定)
- ・分子レーザーと別の角度から半導体 レーザーを照射(分子レーザーのパルス 信号と同期させるトリガー信号とする)

使用する検出器

半導体レーザー: $APD(1mm\phi)$ で検出

分子レーザー: 1.3mm長Whiskerアンテナで拾いGaAsショットキーバリアダイオード(SBD)で検波

分子レーザーのパルス化実験

パルス化実験

- ・発振させる分子レーザー 波長118.8 μ m
- •凹面鏡 f=75cmを光学系に挿入 ⇒分子レーザーのビーム径を絞る
- •波長118.8 μ mの分子レーザーの ビームプロファイル及び 凹面鏡の公式 $(\frac{1}{a} + \frac{1}{b} = \frac{1}{f})$ から 光学系を設計
- •回転ミラーからSBDまでの距離 85+26.6=111.6cm

パルス化実験の結果

<u>分子レーザー</u> $\lambda = 118.8 \, \mu \, \text{m}$

- ・パルス時間幅: 6 μs
- ・ビーム径@検出器:14mm(凹面鏡で集光) (凹面鏡を使用しないと・・・ビーム径:42mm)
- ・パルス時間幅の理論計算値 8.8µs に概ね一致 (回転角速度、ビーム径、ミラー・検出器間距離 などを用いて概算)
- ⇒今後は光学系を改良して

ビーム径:14mm→1mm,

回転ミラーからの距離:116cm→200cm,

パルス時間幅1µsを目指す

半導体レーザー $\lambda = 532$ nm

(ビーム出口でビーム径1mm、広がり角0.5mrad)

- ·パルス時間幅: 0.4µs
- ビーム径@検出器:1mm(凹面鏡の代わりにレンズ使用)
- •回転ミラーから検出器までの距離:325cm

STJ検出器性能評価実験の構想

まとめ

現状

- •STJ検出器の性能評価に用いる遠赤外分子レーザーの稼働テストを実施ニュートリノ崩壊光子のエネルギー E_{γ} =14~24 meV $(\lambda$ =51~89 μ m)をカバーする複数の発振線を確認
- ・光信号に対する検出器の応答を評価する為に、連続波発振する分子レーザーのパルス化が必要⇒現在、時間幅6µsのパルス化に成功

今後

- ・パルス時間幅 目標1µs 回転ミラーから検出器までの距離を伸ばし 凹面鏡等でビーム径を絞る
- ・STJ検出器に遠赤外分子レーザーを照射し STJ検出器の性能評価を行う

Nb/Al-STJ(100×100 mm 2 , 1.8K)にパルス光を照射 1光電子分の信号光源は近赤外(λ =1.32 mm)や青色(0.456 mm)のレーザーを代用

GaAsショットキーバリアダイオード(SBD)検出器

宇宙背景ニュートリノ崩壊光子探索実験

検出器をロケットに乗せて宇宙へ (地上では空気中の水分が崩壊光子 を吸収してしまう) - ニュートリノの寿命τ: 10¹⁷year (理論値) 観測には大量のニュートリノが必要

宇宙に大量に存在するであろう宇宙背景ニュートリノを観測対象とする

・宇宙背景ニュートリノ (Cosmic Neutrino Background) ビッグバンによって宇宙が生まれたとき 光子やクォークなどと共に大量に生成 今でも大量に宇宙を飛び交っていると 考えられているが未発見

色んな粒子が飛び交う宇宙

光子(3K放射):約 400個/cm3

ニュートリノ:約100個/cm³ (理論の予測)

アッテネーター

商品名:Quasioptical Thin Film

Attenuator TFA-4 N2512

特徴:厚さ5 µ mのポリエステルフィル

ムに金属を蒸着したもの。

蒸着した金属の厚さによって透

過率が決まる。

(光学フィルターの様なもの)

レーザー光を何桁も減光させることは今後の課題

FIRレーザーのビーム径測定

測定方法

- ・レーザー出口から<u>47cm</u>離れた位置に 焦電検出器を設置
- ・He-Neレーザーが焦電検出器の受光面の中心に当たる位置をz.x座標の原点とする
- ・z,x軸方向に焦電検出器を2mm程度ずつ動かし レーザーの出力を測定(レーザーの出力は ロックインアンプから出力される値を読む)

Z軸方向に焦電検出器を移動

3

原点から移動させた距離(mm)

- ✓この日は、CO₂、N₂混合ガスボンベの残りが少なくなっていた為 Z軸方向のみ動かして測定を行った。結果は左図のグラフ
- ✓実験終了時のFIRレーザー出力は<u>15mW(チョッパーあり)</u>, CO₂レーザーの出力はガスが少なかった為か29Wまで減少
- ✓ 左図の様なグラフをz.x軸方向について作成
 - \rightarrow 出力最大値の $^{1}/_{e^{2}}$ となる位置までがビーム径と考える

ビームプロファイル計算

ビームプロファイル計算

- ・よりビーム径を小さくする為に11/26に得たデータから おおよそのビームの広がり角θを計算
- FIRレーザーの出口から47cm離れた位置のビーム径はz軸方向 18mm,121.5cm離れた位置のビーム径はz軸方向 56mm
- ・FIRレーザーパルス化実験において重要なのはz軸方向の ビーム径と広がり角のみ(回転ミラーはz軸方向に回転) 今回はz軸方向のみを考慮する
- ・計算結果から適切なSet upを考える

⇒ ビーム広がり角θは51.031 mrad , ビーム径が0になる位置はFIRレーザー出口より 11.79 cm? 計算が正しいかは定かでないが、取りあえずこの結果を頼りにSet upを考える

- ・容器から放出される光子(黒体放射)の影響はどの程度であるか?
- ・宇宙背景放射と黒体放射のバックグラウンドに埋もれずに ニュートリノ崩壊光子を検出することできるのか? ⇒シミュレーションで検討

シミュレーション条件

観測時間	189日
容器のサイズ	経口20cm
	高さ100cm
容器の視野角	0.5°
検出器	Hf-STJを想定(1.7%)
STJのサイズ	100μm×100μm (400pixel)
ニュートリノ崩壊光子 のエネルギー	24meV

ニュートリノ崩壊光子、宇宙背景放射(CIB)、

プランク放射のエネルギースペクトルをシミュレーション

ニュートリノ崩壊光子のエネルギースペクトル

$$\frac{dN}{dE_{\gamma}dSd\Omega dt} = \frac{\rho c}{4\pi \tau H_0 E_{\gamma}} \left[\left(\frac{E_0}{E_{\gamma}} \right)^3 \Omega_M + \Omega_{\Lambda} \right]^{-\frac{1}{2}}$$

Ref. Physics Procedia, Volume 37, 2012, Pages 667-674

観測時間	189日
検出器のサイズ	経口20cm
検出器の視野角	0.5°
検出器の分解能	Hf-STJを想定(1.7%)
STJのサイズ	100μm×100μm

ニュートリノ崩壊光子、宇宙背景放射(CIB)、プランク放射を足し合わせたヒストグラム

300mKに容器を冷やせばプランク放射の 影響は非常に小さい(sharp edgeが見える)

> 黒体放射を考慮しても ニュートリノ崩壊現象は観測可能

観測条件

観測時間	189日
検出器のサイズ	経口20cm
検出器の視野角	0.5°
検出器の分解能	Hf-STJを想定(1.7%)
STJのサイズ	100µm×100µm

- ・ 9μ m~ 11μ mに多くの発振線を持つ(CO_2 分子の振動と 回転状態によって様々なエネルギー準位を持つ為)
- ・出力鏡を圧電素子によって動かし共振器の長さを調節 λ/2の整数倍にして共振させる
- ・回折格子を用いて余計な発振線の共振を防ぐ

分子レーザー装置

遠赤外分子レーザーの発振線の発振方法

- ・レーザー媒質(分子レーザーの共振器に入れる分子)を選択
- •CO₂レーザーを共振器へ入射させ アルコールガスを励起させる
- ・出力鏡をステッピングモーターで動かし共振器長を 微調整。 λ/2の整数倍にして共振させる

分子レーザー共振器内に入れるガス

ガラス容器: CH₃OH, CD₃OH, CH₂DOH,

CHD₂OH, CH₃I (D=重水素)

ガスボンベ: CH₂F₂

レーザーはビームスポットサイズをひろげながら空間を伝播する。 導波路中に凹面鏡や凹レンズを置くことで、スポットサイズの広がりを抑える

スポットサイズを小さくし、レーザーが検出器を横切る時間を短くすることで、パルス時間幅を小さくする

パルス幅は、検出器の受光面上をレーザーのスポットが横切る時間で決まる。 パルスの半値幅は、レーザーのスポットが半径Rcm(ミラーから検出器までの距離)の 円周上を、距離にして

SBDのアンテナ長(1.36mm)+検出器の位置でのレーザーのスポットサイズ
$$2$$
 cm

だけ移動する時間。(2で割るのは半値幅を求める為)

これをレーザースポットの回転角速度の2倍になることに留意して計算すると

パルス半値幅は

x cm

円周半径 $R \text{ cm} \times 2 \times \text{ミラーの回転速度} 377 rad/s$

レーザー入射角とパルス時間幅

半導体レーザーを入射角 θ を変えて回転ミラーに入射

その時々のパルス時間幅を測定。

回転ミラーから検出器までの距離は325cmと一定

オプティカル・チョッパーのテスト

羽根の直径100mm、隙間1mm、 100Hzで回転する汎用チョッパー

He-Neレーザー

結果:パルス幅30 μ s

もっと、

回転数の高いチョッパー、隙間の狭い羽根を用いて

目標:1μs

ニュートリノの寿命

L-R シンメトリックモデルで計算 W_L と W_R が両方存在していると仮定したモデル

$$\tau^{-1} = \frac{\alpha G_F^2}{32\pi^4} \left(\frac{\Delta m_{32}^2}{m_3}\right)^3$$

ref. R.E.Schrock, Nucl. Phys. B206 (1982) 359 ref. M.Czakon, Phys. Lett. B458(1999)355

$$\times |U_{32}|^2 |U_{33}|^2 \left[\frac{9}{64} \left(m_3^2 + m_2^2 \right) \frac{m_\tau^4}{M_{W1}^4} \left(1 + \frac{M_{W1}^2}{M_{W2}^2} \right)^2 + 4m_\tau^2 \left(1 - \frac{M_{W1}^2}{M_{W2}^2} \right)^2 \sin^2 2\zeta \right]$$

質量二乗差: $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$ 、 ν_3 、 ν_2 の質量: $m_3 = 50 \text{ meV}$, $m_2 = 8.7 \text{ meV}$

T粒子の質量: m_z = 1.78 GeV 、微細構造定数: α = 7.30 × 10⁻³

フェルミカップリング定数: G_F = $1.17 imes 10^{5}\,\mathrm{GeV^2}$

 W_L の質量: M_{W2} = $80.4 {
m Ge}$ 、 W_R の質量下限: M_{W2} = $0.715 {
m TeV}$

 $W_L \geq W_R$ の混合角の上限: $\sin \zeta = 0.013$

 $\tau = 1.10 \times 10^{17} \text{ years}$

遠赤外分子レーザーの大気中の水分による減衰

予測される崩壊光子と宇宙背景赤外放射(CIB)のエネルギースペクトル

シミュレーション条件

観測時間	189日
検出器のサイズ	口径20cm
検出器の視野角	0.5°
検出器の分解能	考慮しない(0%)
$E\gamma$	24 meV(52 μm)

sharp edgeを膨大なCIBのバックグラウンドの中から観測する必要がある その為に、本実験では高エネルギー分解能を持つ検出器が要求される

検出原理

ニュートリノ崩壊光子のエネルギーと バックグラウンド(CIB)を足し合わせたヒストグラム

シミュレーション条件

半導体レーザーのパルス

半導体レーザーのパルスを1000発取り込みパルス時間幅とパルス波高の分布を作成

Energy Spectrum for CIB, Neutrino decay photon,
The photon emitted by a vacuum vessel

Conditions

CIB and Neutrino decay photon

- •20cm-diameter telescope
- •viewing angle 0.35 ' $\times 2.7$ '
- •10days data-taking

photons emitted by a vacuum vessel

- •10days data-taking
- •temperature T 1K,3K,5K,7K

崩壊現象観測可能性の検討

シミュレーション条件

観測時間	189日
検出器の大きさ	直径20cm
検出器の視野角	0.5°
検出器の分解能	1.7%rms

エッジの部分(*E_γ*)で傾きが大きくなったことを確認

↓
シミュレーション条件において
崩壊現象の観測は可能である

CO₂レーザー原理②

図 3.2 CO₂ と N₂ 分子の振動回転エネルギー準位 [46]

励起されたCO₂分子は (001)を上準位(J=5)とし、 (100)または(020)を下準位 として落ちる。

(J-1)から(J)の遷移をPブランチ (J+1)から(J)の遷移をRブランチ と呼び、P(J)、R(J)と表記

真空容器から放出される光子

IR Light

真空容器から熱放射によって放出される光子は、ニュートリノ崩壊現象探索実験に影響しないのか?

plankの放射公式

黒体炉内の、単位体積あたり、単位周波数あたりの輻射エネルギー密度 $u_{\nu}[J/m^3 \ Hz]$ を表す

$$u_{\nu} d\nu = \frac{8\pi h \nu^{3}}{c^{3}} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1} d\nu$$

光子数と光子のエネルギーの関係を知りたい

$$\cdot \nu = \frac{E}{h}$$
に変数変換

- ・単位JをeVに変換
- ・光子のエネルギーEで割る

$$u_{\nu}$$
d $E = \frac{8\pi E^2}{c^3 h^3} \frac{1}{\exp\left(\frac{E}{kT}\right) - 1} dE$
 u_{ν} の単位は[number/m³ eV]

STJ検出器に当たる光子の数 N_{γ}

条件 • 真空容器内

- $-100\mu \text{m} \times 100\mu \text{m}$ Ω STJ
 - ・ニュートリノ崩壊光子のエネルギー(と予測される)15~25meV のエネルギーを持つ光子(以降15~25meVをE,領域とする)
 - ・1s間にSTJに当たる光子数

この筒の中に存在する、 E_{ν} 領域のエネルギーを持つ光子の数は $\int_{15\,\mathrm{meV}}^{25\,\mathrm{meV}}u_{\nu}\,dE \times$ (筒の体積) その中で、光子は3方向に飛び、1/3の確率でSTJに当たるとすると、

$$N_{\gamma} = \frac{1}{3} \int_{15 \, \text{meV}}^{25 \, \text{meV}} u_{\nu} \, dE \times ($$
筒の体積)

- ・真空容器の温度3Kが時 $N_{\nu} = 4.82 \times 10^{-14}$ 個
- ・真空容器の温度、積分範囲(E_{ν} 領域)を広げて計算

 N_{ν} : The photon emitted by a vacuum vessel

$$u_{\nu} d\nu = \frac{8\pi h \nu^{3}}{c^{3}} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1} d\nu$$
plank' law of radiation

Conditions

- •100 μ m \times 100 μ m-size STJ
- •considering 1 s
- •temperature $T=0.1^{\sim}15$ K
- •integral range 15~30meV, 10~35meV, 5~40meV

CO₂レーザー原理①

 CO_2 分子の振動状態は、 (v_1, v_2, v_3) の3つの量子 数の組み合わせで表される。

振動状態によって決まる 振動エネルギー準位は、 さらに回転量子数Jによる いくつかのエネルギー準 位からなる

STJ検出器(Superconducting Tunnel

- 超伝導膜2枚で絶縁膜を挟んだサンドイッチ構造
- 遠赤外領域の光子のエネルギー測定のために有望

STJ検出器のエネルギー測定精度

$$\sigma = \sqrt{1.7\Delta(FE_{\gamma})}$$

光子のエネルギー: E_{γ} エネルギーギャップ: Δ

ファノ因子:

Material	⊿(meV)	エネルギー分解能(%) $\frac{\sigma}{E_{\gamma}}$
Hf	0.021	$1.7@E_{\gamma}$ =24 meV
E Al	0.172	$4.9@E_{\gamma}$ =24 meV

Ref. M.Kurakado, Nucl. Instr. And Meth.196(1982)275