Far-Infrared source R&D

福井大工,中部大工^A,筑波大数理^B,福井大遠赤セ^C, 〇<u>廣瀬龍太</u>,吉田拓生,加藤圭騎,岡島茂樹^A,中山和也^A,金信弘^B,武内勇司^B, 笠原宏太^B,市村龍哉^B,奥平琢也^B,森内航也^B,先崎 蓮^B,小川勇^C,

> ニュートリノフロンティア 2014年 12月23日

<u>ニュートリノ崩壊現象</u>

ニュートリノ崩壊のファインマン図 $V_3 \rightarrow V_2 + \gamma$ $v_2(m_2)$ $v_3(m_3)$

γ(neutrino decay photon)

m ₁ (meV)	m ₂ (meV)	m ₃ (meV)	E_{γ} (meV)	波長 λ (μ m)
0	8.7	50	24	51
24	36	61	20	62
70	71	87	14	89

 ・ニュートリノ振動実験等により質量二乗差が 測定。しかしニュートリノの質量の値は未知
 ⇒ニュートリノ振動実験に着目

・ニュートリノ崩壊光子のエネルギー E_{γ}

$$E_{\gamma} = \frac{m_3^2 - m_2^2}{2m_3} \equiv \frac{\Delta m_{32}^2}{2m_3}$$

(二体崩壊なので E_{γ} はmonochromatic)

・ $m_1 = 0 \text{ meV}, m_2 = 8.7 \text{ meV}, m_3 = 50 \text{ meV}$ と仮定すると $E_{\gamma} = 24 \text{ meV} (51 \mu \text{m})$

⇒本研究ではE_γ=14~24 meV(λ=51~89 µ m) 付近の光(遠赤外領域)と予測し探索を行う

<u>STJ検出器(Superconducting Tunnel Junction)</u>

面積:100µm×100µm 厚さ:300nm

<u>STJ検出器</u>

・遠赤外領域の光子のエネルギー

測定に有望

- ・崩壊光子を検出しニュートリノ質量を 精度良く測定することが可能
 - ・STJ検出器のエネルギー分解能

超伝導体 材質	エネルギー ギャップ ∆	エネルギー 分解能@24meV
Nb	$1.55 \mathrm{meV}$	14.8%
Al	0.172meV	4.9%
Hf	0.021meV	1.7%

Δ:クーパー対を壊すのに必要なエネルギー

小さいほど電子が多く出て統計精度が良くなる

現在開発中のSTJ検出器の性能評価実験が必要 ⇒ 本研究の目的:性能評価実験に用いる光源の開発

性能評価実験に用いる光源

福井大学遠赤外線領域開発センター 遠赤外分子レーザーシステム 中部大学 岡島研で開発

STJ検出器性能評価実験 ニュートリノ崩壊光子のエネルギー *E_γ*= 14~24 meV (λ=51~89 μm,)を カバーする光源が必要

福井大学遠赤外線領域開発センター 遠赤外分子レーザーシステム

- •アルコールガス(CH₃OHなど)をCO₂レーザー で励起させ、遠赤外分子レーザーを発振
- ・遠赤外分子レーザーは連続波
- ・発振波長:40~500µm(E_γ:2.5~31meV,
 周波数:7.2~0.6 THz)の間の約70本の単色
 発振線から任意の一つを選択可

<u>レーザーシステムがカバーする波長領域</u>

<u>遠赤外分子レーザーシステム模式図</u>

分子レーザー装置

アルコール容器

<u>遠赤外分子レーザーの稼働テスト</u>

Set up

・テストで発振させる分子レーザー
 [分子:CD₃OH 波長:52.9 µ m(設計値)]

共振器長の微調節(ミラーの位置座標)x (µm)

7

<u>遠赤外レーザー発振線の例(74本の設計値の一部)</u>

	使用する 分子	CO ₂ 発振線	CO ₂ 出力 (W)	波長 (µm)	光子のエネルギー (meV)	出力 (mW)
≯	CD ₃ OH	10R(18)	(89)	43.7	28.4	(6)
≯	CD ₃ OH	9R(34)	57 (63)	52.9	23.5	4.2 💥
≯	CH ₃ OD	9R(8)	(138)	57.2	21.7	(1.6W)
≯	CD ₃ OH	10R(16)	(99)	86.4	14.4	(25)
	CH ₃ OH	9R(10)	(83)	96.5	12.9	(68)
≯	CH ₃ OH	9P(36)	(148)	118.8	10.4	38
	CH ₂ DOH	10P(26)	(110)	150.6	8.2	(24)
≯	CH ₃ CN	9R(16)	(107)	453.4	2.7	(0.4)
は稼	『働テスト済みの発	振線	1		()内は設計値	^

遠赤外分子レーザーはニュートリノ崩壊光子のエネルギー *E_γ*=14~24 meV(λ=51~89 μm)を充分カバー ⇒性能評価実験に用いることが出来る

<u>回転ミラーによる連続波分子レーザーのパルス波への変換</u>

使用する検出器

分子レーザーパルス化実験 ・光信号に対する検出器の応答を評価 遠赤外レーザーのパルス化が必要 ⇒回転ミラーでパルス化(目標時間幅1µs)

- ・反射したレーザー光が検出器を通過 した際パルス信号として検出
- ・パルス時間幅はミラーから検出器までの 距離+ビームスポットサイズで決まる (回転ミラーの角速度は3600rpmで一定)
- ・分子レーザーと別の角度から半導体 レーザーを照射(分子レーザーのパルス 信号と同期させるトリガー信号とする)

半導体レーザー: APD(1mm¢)で検出 分子レーザー:1.3mm長Whiskerアンテナで拾いGaAsショットキーバリアダイオード(SBD)で検波

パルス化実験の結果

分子レーザー $\lambda = 118.8 \,\mu$ m

- ・パルス時間幅:6µs
 ・ビーム径@検出器:14mm(凹面鏡で集光)
 (凹面鏡を使用しないと・・・ビーム径:42mm)
 ・パルス時間幅の理論計算値 8.8µs に概ね一致
 (回転角速度、ビーム径、ミラー・検出器間距離 などを用いて概算)
- ⇒今後は光学系を改良して ビーム径:14mm→1mm, 回転ミラーからの距離:116cm→200cm, パルス時間幅1µsを目指す

<u>半導体レーザー</u> λ =532nm

- (ビーム出口でビーム径1mm、広がり角0.5mrad)
- ・パルス時間幅:0.4µs
- ・ビーム径@検出器:1mm

(凹面鏡の代わりにレンズ使用) ・回転ミラーから検出器までの距離:325cm

まとめ

現状

・STJ検出器の性能評価に用いる遠赤外分子レーザーの稼働テストを実施 ニュートリノ崩壊光子のエネルギー *E_γ*=14~24 meV(λ=51~89 μm)を カバーする複数の発振線を確認

 ・光信号に対する検出器の応答を評価する為に、連続波発振する分子レーザーの パルス化が必要⇒現在、時間幅6µsのパルス化に成功

GaAsショットキーバリアダイオード(SBD)検出器

宇宙背景ニュートリノ崩壊光子探索実験

検出器をロケットに乗せて宇宙へ (地上では空気中の水分が崩壊光子 ∧ を吸収してしまう)

色んな粒子が飛び交う宇宙 光子(3K放射):約 400個/cm³ ニュートリノ:約100個/cm³ (理論の予測) ニュートリノの寿命τ:10¹⁷year(理論値)
 観測には大量のニュートリノが必要

宇宙に大量に存在するであろう 宇宙背景ニュートリノを観測対象とする

・宇宙背景ニュートリノ

(Cosmic Neutrino Background) ビッグバンによって宇宙が生まれたとき 光子やクォークなどと共に大量に生成 今でも大量に宇宙を飛び交っていると 考えられているが未発見

アッテネーター

FIRレーザーのビーム径測定

測定方法

- ・レーザー出口から<u>47cm</u>離れた位置に
 焦電検出器を設置
- ・He-Neレーザーが焦電検出器の受光面の 中心に当たる位置をz,x座標の原点とする
- ・z,x軸方向に焦電検出器を2mm程度ずつ動かし
 レーザーの出力を測定(レーザーの出力は
 ロックインアンプから出力される値を読む)

- ✓この日は、CO₂、N₂混合ガスボンベの残りが少なくなっていた為 Z軸方向のみ動かして測定を行った。結果は左図のグラフ
- ✓実験終了時のFIRレーザー出力は<u>15mW(チョッパーあり)</u>, CO₂レーザーの出力はガスが少なかった為か29Wまで減少
- ✓ 左図の様なグラフをz,x軸方向について作成 →出力最大値の¹/₂となる位置までがビーム径と考える

ビームプロファイル計算

 よりビーム径を小さくする為に11/26に得たデータから おおよそのビームの広がり角のを計算

FIRレーザーの出口から
 47cm離れた位置のビーム径はz軸方向 18mm,
 121.5cm離れた位置のビーム径はz軸方向 56mm

- ・FIRレーザーパルス化実験において重要なのはz軸方向の ビーム径と広がり角のみ(回転ミラーはz軸方向に回転) 今回はz軸方向のみを考慮する
- ・計算結果から適切なSet upを考える

ビーム広がり角θは51.031 mrad,ビーム径が0になる位置はFIRレーザー出口より
 11.79 cm?
 計算が正しいかは定かでないが、取りあえずこの結果を頼りにSet upを考える

・容器から放出される光子(黒体放射)の影響はどの程度であるか? ・宇宙背景放射と黒体放射のバックグラウンドに埋もれずに

ニュートリノ崩壊光子を検出することできるのか? ⇒シミュレーションで検討

ニュートリノ崩壊光子、宇宙背景放射(CIB)、 プランク放射を足し合わせたヒストグラム

レーザーはビームスポットサイズをひろげながら空間を伝播する。 導波路中に凹面鏡や凹レンズを置くことで、スポットサイズの広がりを抑える

スポットサイズを小さくし、レーザーが検出器を横切る時間を短くする ことで、パルス時間幅を小さくする

パルス幅は、検出器の受光面上をレーザーのスポットが横切る時間で決まる。 パルスの半値幅は、レーザーのスポットが半径Rcm(ミラーから検出器までの距離)の 円周上を、距離にして

だけ移動する時間。(2で割るのは半値幅を求める為)

これをレーザースポットの回転角速度の2倍になることに留意して計算すると パルス半値幅は

<u>x cm</u> 円周半径R cm × 2 × ミラーの回転速度377*rad/s*

レーザー入射角とパルス時間幅

ニュートリノの寿命

L-R シンメトリックモデルで計算 W_LとW_Rが両方存在していると仮定したモデル

 $\tau^{-1} = \frac{\alpha G_F^2}{32\pi^4} \left(\frac{\Delta m_{32}^2}{m_3}\right)^3$ ref. R.E.Schrock, Nucl. Phys. B206 (1982) 359 ref. M.Czakon, Phys.Lett. B458(1999)355 × $|U_{32}|^2 |U_{33}|^2 \left[\frac{9}{64} \left(m_3^2 + m_2^2\right) \frac{m_{\tau}^4}{M_{W1}^4} \left(1 + \frac{M_{W1}^2}{M_{W2}^2}\right)^2 + 4m_{\tau}^2 \left(1 - \frac{M_{W1}^2}{M_{W2}^2}\right)^2 \sin^2 2\zeta\right]$ 質量二乗差: $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, v_3 , $v_2 \mathcal{O}$ 質量: $m_3 = 50 \text{ meV}$, $m_2 = 8.7 \text{ meV}$ T粒子の質量: $m_{\tau} = 1.78 \text{ GeV}$, 微細構造定数: $\alpha = 7.30 \times 10^{-3}$ $7 \pm \mu \lesssim \hbar \sqrt{\tau} \mathcal{T}$ 定数: $G_F = 1.17 \times 10^{-5} \text{ GeV}^2$ W_L \mathcal{O} 質量: $M_{W1} = 80.4 \text{ Ge}$, W_R \mathcal{O} 質量下限: $M_{W2} = 0.715 \text{ TeV}$ W_L \mathcal{E} W_R \mathcal{O} 混合角の上限: $\sin \zeta = 0.013$ $\tau = 1.10 \times 10^{17}$ years

遠赤外分子レーザーの大気中の水分による減衰

予測される崩壊光子と宇宙背景赤外放射(CIB)のエネルギースペクトル

sharp edgeを膨大なCIBのバックグラウンドの中から観測する必要がある その為に、本実験では高エネルギー分解能を持つ検出器が要求される

検出原理

半導体レーザーのパルスを1000発取り込みパルス時間幅とパルス波高の分布を作成

Energy Spectrum for CIB, Neutrino decay photon, The photon emitted by a vacuum vessel

<u>崩壊現象観測可能性の検討</u>

シミュレーション条件

観測時間	189日
検出器の大きさ	直径20cm
検出器の視野角	0.5°
検出器の分解能	1.7%rms
検出器の分解能	1.7%rms

エッジの部分(<i>E_γ</i>)で傾きが大きくなったことを確認
\downarrow
シミュレーション条件において
崩壊現象の観測は可能である

図 3.2 CO₂ と N₂ 分子の振動回転エネルギー準位 [46]

真空容器から熱放射によって放出される光子は、ニュートリノ崩壊現象探索実験に影響しないのか?

plankの放射公式

黒体炉内の、単位体積あたり、単位周波数あたりの輻射エネルギー密度 u_{ν} [J/m³ Hz]を表す

STJ検出器に当たる光子の数 N_{γ}

条件·真空容器内

 $\cdot 100 \mu m \times 100 \mu m OSTJ$

・ニュートリノ崩壊光子のエネルギー(と予測される)15~25meV
 のエネルギーを持つ光子(以降15~25meVをE_v領域とする)

1s間にSTJに当たる光子数

この筒の中に存在する、 E_v 領域のエネルギーを持つ光子の数は $\int_{15 \text{meV}}^{25 \text{meV}} u_v dE \times$ (筒の体積) その中で、光子は3方向に飛び、1/3の確率でSTJに当たるとすると、

 $N_{\gamma} = \frac{1}{3} \int_{15 \, \text{meV}}^{25 \, \text{meV}} u_{\nu} \, dE \times ($ 筒の体積)

・真空容器の温度3Kが時 $N_{\nu} = 4.82 \times 10^{-14}$ 個

・真空容器の温度、積分範囲(Ev領域)を広げて計算

 N_{γ} : The photon emitted by a vacuum vessel

CO₂分子の振動状態は、 (v₁, v₂, v₃)の3つの量子 数の組み合わせで表され

振動状態によって決まる 振動エネルギー準位は、 さらに回転量子数Jによる いくつかのエネルギー準

