新学術領域研究 「ニュートリノフロンティア」 研究会 2014

neutrino frontier workshop 2014

opening address, December 21, 2014, Fuji-Yoshida

Where are we?

SU(3)xSU(2)xU(1) gauge theory

Higgs mechanism for gauge boson masses

mechanism for fermion masses

What's particle physics?

coupling constants

new physics?

$$Z[g, g_{\text{new}}] = \int [d\phi] [d\phi_{\text{new}}] e^{i \int d^4 x \mathcal{L}(\phi, \phi_{\text{new}})}$$

boring..

What we really want to know is

$$Z[g] = \int [d\phi] e^{i \int d^4 x \mathcal{L}(\phi)}$$

this function. this is the physics.

all the physical quantities are encoded in this function.

probably more data is needed to make a real progress in particle physics.

fermion masses?

there are many mysteries in the fermion masses.

Why neutrinos light?

Why (not) hierarchical?

A large phase $\delta_{KM} \sim O(1)$ and an extremely small phase $\theta \leq 10^{-10}$ in the quark mass matrix. Why?

Why three generations?

Is there any principle for Yukawa interactions?

In the quark sector

there seems to be a nontrivial structure.

m_u~a few MeV « m_c~1 GeV « m_t~170 GeV m_d~a few MeV « m_s~100 MeV « m_b~4 GeV similar hierarchical.

And in this basis, the CKM matrix is

$$V_{\text{CKM}} \sim \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} \quad \text{not} \begin{pmatrix} & 1 & \\ 1 & & \\ & & 1 \end{pmatrix} \text{or} \begin{pmatrix} & 1 & \\ & 1 & \\ 1 & & \end{pmatrix}$$

lepton sector

 $\label{eq:me} \begin{array}{l} m_e \sim 0.5 \mbox{ MeV} \ll m_{\mu} \sim 100 \mbox{ MeV} \ll m_{\tau} \sim 1.8 \mbox{ GeV} \\ \mbox{similar}? \\ m_d \sim a \mbox{ few MeV} \ll m_s \sim 100 \mbox{ MeV} \ll m_b \sim 4 \mbox{ GeV} \end{array}$

 $\Delta m_{21}^2 \sim (0.01 \text{eV})^2 \quad \Delta m_{31}^2 \sim (0.04 \text{eV})^2$

doesn't look like hierarchical

big mixing angles $U_{\rm PMNS} \sim \left(egin{array}{ccc} 0.8 & 0.6 & 0.15 \\ & 0.5 & 0.7 \\ & & 0.7 \end{array}
ight)$

A large Yukawa interaction

implies the elementary Higgs boson.

And it is clear that the fermions are giving potential to the Higgs field at the quantum level.

 \rightarrow access to nature of the **Higgs** field.

CP violation requires a phase in **fermion masses**.

→ access to nature of baryon asymmetries in the Universe.

Anyway,

to understand **both**

the nature of our **fundamental law**

and

the history of the Universe,

Neutrinos are the key.

Let's enjoy this year's progress in the neutrino physics in this workshop.