Neutrino Frontier Workshop 2014 (Fuji Calm, 2014.12.21)

Matter Effect in Long Baseline Neutrino Oscillation

Masafumi Koike (Utsunomiya U.)

working with Toshihiko Ota (Saitama U.) Masako Saito (Utsunomiya U.) Joe Sato (Saitama U.)

Introduction

Neutrino Mixings: Achievements

From discovery to precision measurements

PHYSICAL REVIEW D 89, 093018 (2014)

Status of three-neutrino oscillation parameters, circa 2013

F. Capozzi,^{1,2} G. L. Fogli,^{1,2} E. Lisi,² A. Marrone,^{1,2} D. Montanino,^{3,4} and A. Palazzo⁵

Parameter	Best fit	1σ range	2σ range
$\delta m^2/10^{-5} \mathrm{eV}^2$ (NH or IH)	7.54	7.32–7.80	7.15-8.00
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.08	2.91-3.25	2.75-3.42
$\Delta m^2 / 10^{-3} eV^2$ (NH)	2.43	2.37-2.49	2.30-2.55
$\Delta m^2 / 10^{-3} \text{eV}^2$ (IH)	2.38	2.32-2.44	2.25-2.50
$\sin^2 \theta_{13} / 10^{-2}$ (NH)	2.34	2.15-2.54	1.95-2.74
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.40	2.18-2.59	1.98-2.79
$\sin^2 \theta_{23} / 10^{-1}$ (NH)	4.37	4.14-4.70	3.93-5.52
$\sin^2 \theta_{23} / 10^{-1}$ (IH)	4.55	4.24-5.94	4.00-6.20
δ/π (NH)	1.39	1.12–1.77	$0.00 - 0.16 \oplus 0.86 - 2.00$
δ/π (IH)	1.31	0.98–1.60	$0.00 - 0.02 \oplus 0.70 - 2.00$

Neutrino Mixings: Challenges

- Mass Hierarchy $\delta m^2_{31} \ge 0$?
- Octant Degeneracy θ₂₃ ≥ π/4 ?
- Leptonic CP Violation $\sin \delta_{CP} = 0$?
 - Oscillation experiments with very long baseline (1000~10000 km)
 - Exploiting the matter effect

Evaluating the Matter Effect

K. Hagiwara, T. Kiwanami, N. Okamura, K.-i. Senda (2013)

Earth Model

Density Profile on a Baseline

Matter Density Profile

Constant vs. Earth Model

Matter Profile: Fourier Series

Formulation

Modeling Density Profiles

Akhmedov (1988), Krastev-Smirnov (1989), Krastev-Smirnov (1989), Liu-Smirnov (1998), Petcov (1998), Chizhov-Petcov (1998), ..., Akhmedov-Maltoni-Smirnov (2005), ...

Two-Flavor Oscillation

MK-Ota-Saito-Sato, PLB 675, 69 (2009)

Evolution equation of the two-flavor neutrino

 $i\frac{d}{dx}\begin{pmatrix}\nu_{e}(x)\\\nu_{\mu}(x)\end{pmatrix} = \frac{1}{2E} \begin{bmatrix}\frac{\delta m^{2}}{2}\begin{pmatrix}-\cos 2\theta & \sin 2\theta\\\sin 2\theta & \cos 2\theta\end{pmatrix} + \begin{pmatrix}a(x) & 0\\0 & 0\end{pmatrix}\end{bmatrix} \begin{pmatrix}\nu_{e}(x)\\\nu_{\mu}(x)\end{pmatrix}$ Matter effect $a(x) = 2\sqrt{2}G_{F}n_{e}(x)E$

- Second-order equation in dimensionless variables
 z''(\xi) + \frac{1}{4} \left[\left(\Delta_m(\xi) \Delta\cos 2\theta \right)^2 + \Delta^2 \sin^2 2\theta + 2\verta \Delta'_m(\xi) \right] z(\xi) = 0
 - Dimensionless variables:

$$\xi \equiv \frac{x}{L} \qquad \Delta \equiv \frac{\delta m^2 L}{2E} \qquad \Delta_{\text{meciprocal E}} \qquad \Delta_{\text{m}}(\xi) \equiv \frac{a(\xi)L}{2E}$$

$$\text{Matter effect} \qquad \Sigma = \frac{\lambda}{2E} \qquad \Delta_{\text{m}}(\xi) \equiv \frac{a(\xi)L}{2E}$$

$$z(\xi) = \nu_{\text{e}}(\xi) \exp\left[\frac{i}{2}\int_{0}^{\xi} ds \,\Delta_{\text{m}}(s)\right] \qquad \cdots \qquad \left|\nu_{\text{e}}(\xi)\right|^{2} = \left|z(\xi)\right|^{2}$$

$$\text{Initial conditions} \qquad \nu_{\text{e}}(0) = 0, \ \nu_{\mu}(0) = 1 \rightarrow z(0) = 0, \ z'(0) = -i\frac{\Delta}{2}\sin 2\theta$$

Constant-Density Matter

• Constant density: $\Delta_m(\xi) = \Delta_0 = (const.)$

 $z''(\xi) + \underbrace{\frac{1}{4} \Big[\big(\Delta_{\rm m}(\xi) - \Delta \cos 2\theta \big)^2 + \Delta^2 \sin^2 2\theta + 2i\Delta'_{\rm m}(\xi) \Big]}_{\equiv \omega_0^2 \quad \text{(const.)}} z(\xi) = 0$

$$\blacktriangleright \operatorname{Prob}(\nu_{\mu} \to \nu_{e}) \propto \sin^{2} \omega_{0} \xi$$

Inhomogeneous Matter

$$z''(\xi) + \frac{1}{4} \left[\left(\Delta_{\mathrm{m}}(\xi) - \Delta \cos 2\theta \right)^2 + \Delta^2 \sin^2 2\theta + 2\mathrm{i}\Delta'_{\mathrm{m}}(\xi) \right] z(\xi) = 0$$

Fourier series of inhomogeneous matter

 $z''(\xi) + \left(\omega_0^2 + \alpha_n \cos 2n\pi\xi - i\beta_n \sin 2n\pi\xi + \gamma_n \cos 4n\pi\xi\right) z(\xi) = 0$

$$\omega_0^2 = \frac{1}{4} (\Delta_{m0} - \Delta \cos 2\theta)^2 + \frac{1}{4} \Delta^2 \sin^2 2\theta + \frac{1}{8} \Delta_{mn}^2 ,$$
$$\alpha_n = \frac{1}{2} (\Delta_{m0} - \Delta \cos 2\theta) \Delta_{mn} , \quad \beta_n = n\pi \Delta_{mn} , \quad \gamma_n = \frac{1}{8} \Delta_{mn}^2$$

Parametric Resonance

- Periodic perturbation
 - Twice in a period
 - Grows amplitude of oscillation
- Matter effect as a bunch of periodic perturbations

Ermilova et al. (1986), Akhmedov (1988), Krastev-Smirnov (1989), Liu-Smirnov (1998), Petcov (1998), Chizhov-Petcov (1998), ..., Akhmedov-Maltoni-Smirnov (2005), ...

Resonance Condition

 $z''(\xi) + \left(\omega_0^2 + \alpha_n \cos 2n\pi\xi - i\beta_n \sin 2n\pi\xi + \gamma_n \cos 4n\pi\xi\right) z(\xi) = 0$

Effect of the Mode 1

Effect of the Mode 2

Matter-Profile Effects

Oscillogram: Full Profile

Fourier Coefficients

Oscillogram: Residues

Summary & Outlook

- Fourier analysis is powerful to account for the matter-profile effects in neutrino oscillation.
 - *n*-th Fourier mode \leftrightarrow *n*-th dip of the appearance probability
 - Inhomogeneity → Parametric resonance
 - Systematic improvement
- \bullet Low $E_v \leftrightarrow$ Small-size structure of matter

Backup slides

First-mode effect

Second-mode effect

