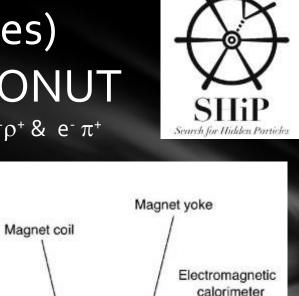
Tau Neutrino Physics in SHiP at CERN

Masahiro Komatsu : Nagoya University

21-23 Dec. 2014


ニュートリノフロンティア研究会

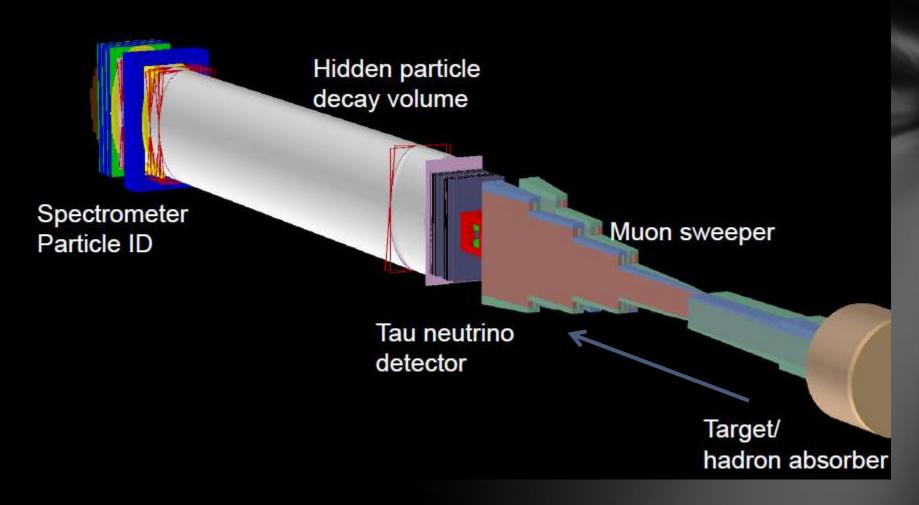
SHiP (Search for Hidden Particles) Beam dump experiment like DONUT

Reconstruction of the HNL decays in the final states: $\mu^{-}\pi^{+}$, $\mu^{-}\rho^{+}$ & $e^{-}\pi^{+}$

Initial detector concept

Muon filter

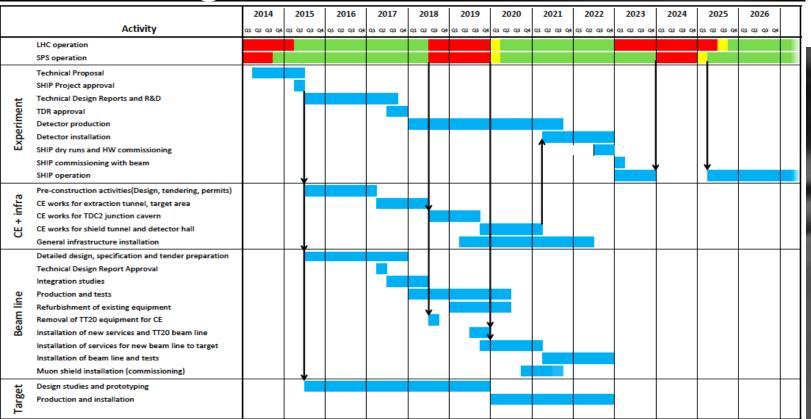
Veto chambers


Decay volume

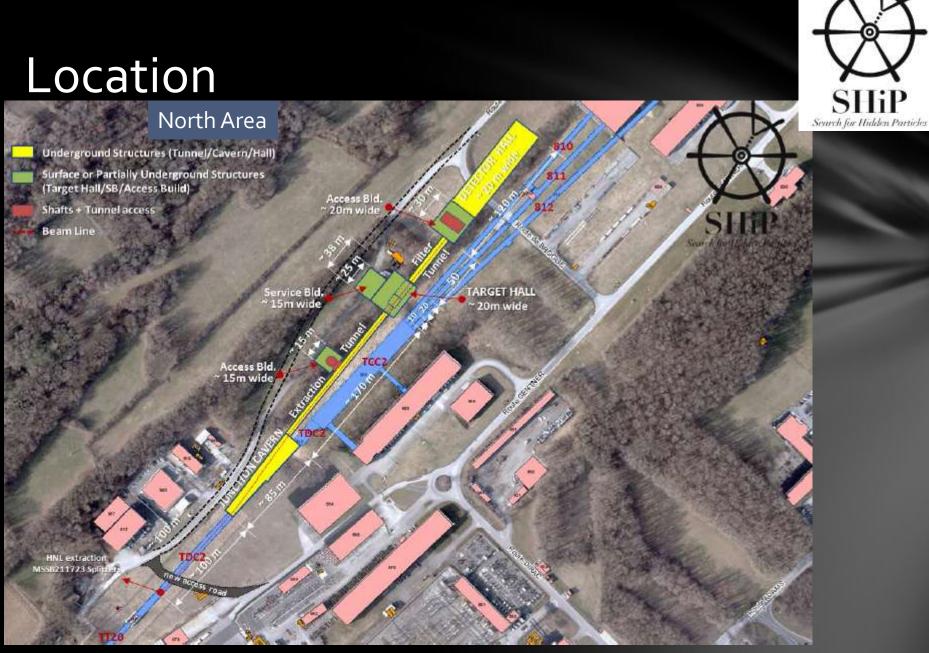
- Long vacuum vessel, 5 m diameter, 50 m length
- Background from active neutrino interactions becomes negligible at 0.01 mbar
- 10 m long magnetic spectrometer with 0.5 Tm dipole magnet and 4 low material tracking chambers

Muon detector

Design with tau neutrino detector



SHiP (Search for Hidden Particles) Main Objectives in Physics

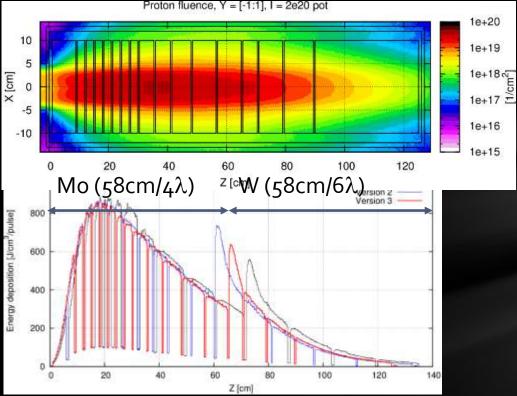

- Explore hidden portals of the SM using > 2 × 10²⁰ p.o.t.
 (>10¹⁷ D, >10¹⁵ τ)
 - Heavy neutral lepton in various states
 - ✓ Dark photon
 - ✓ SUSY neutralino
 - See more detail on http://ship.web.cern.ch/
- ✓ Neutrino interactions (expect ~3500 v_{τ} interactions in 6 tons emulsion target)
 - \checkmark v_{τ} and anti- v_{τ} physics
 - Charm physics in neutrino and anti-neutrino interactions
 - Physics in v_{τ} scattering, magnetic moment, structure function.

Planning schedule of the SHiP

Form SHiP collaboration \rightarrow 2014Technical Proposal \rightarrow 2015Technical Design Report \rightarrow 2018Construction and installation \rightarrow 2018-2022Commissioning \rightarrow 2022Data taking and analysis of 2x10²⁰ pot \rightarrow 2023-2027

Search for Hidden Particles

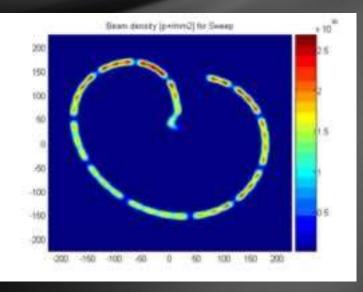
North area


Beam parameters for SHiP

Proton beam

- Momentum : 400GeV/c
- Beam intensity : 4.5 x 10¹³ /cycle
- Cycle length : 7.2 s
- Spill duration : 1 s (slow spill)
- Average power : 400kW (during spill ~3MW)
- Expected spot size (H/V) : 6mm/6mm
- \rightarrow 4x10¹⁹ pot / year \rightarrow 2x10²⁰ pot for 5 years
 - Very same with CNGS performance
 - Plan was 2.25x10²⁰ but 1.8x10²⁰ was delivered.

Beam dump target



- In case of no sweep, the target would not melt but will fail by pressure.
- 1.2 DPA (displacement per atom) with 2x10²⁰ pot

Segmented Mo and W target actively cooled with water.

- Beam on target
 - Sweep is necessary like LHC

Tau neutrino physics in SHiP

Tau neutrino so far detected

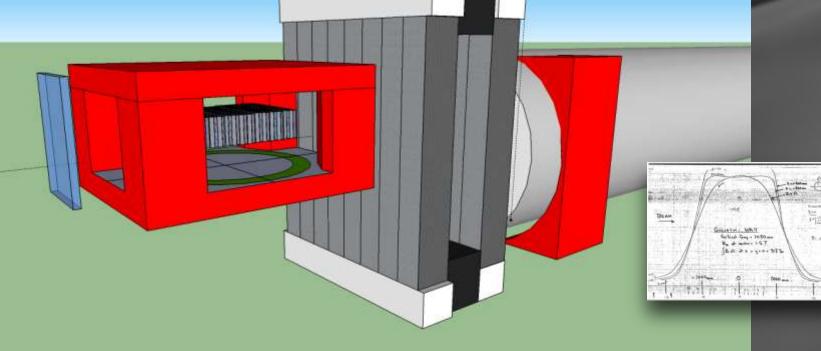
- ▶ 9 (7.5) in DONUT (first observation)
- ➢ 4 in OPERA (oscillation)
- Tau neutrino cross-section measurement
- Anti tau neutrino detection and cross-section
 - Muonic channel to determine anti neutrino
 - Also hadronic channel in case of magnetized option.
- Charm physics with neutrino and anti neutrino
- Electron neutrino study in high energy range.
 - Also important for normalization of charmed hadron production in the beam dump target. Important for NHL.

Working hypothesis from DONUT

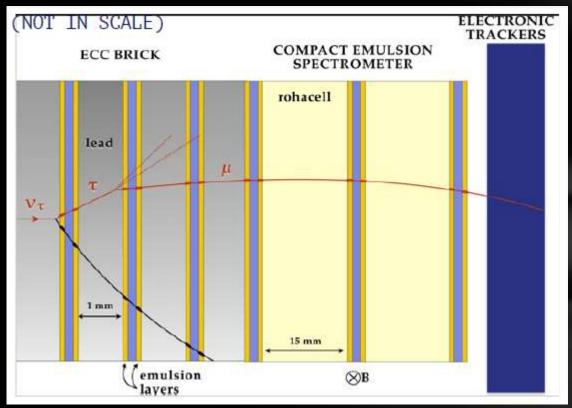
- Charm production by 400GeV, detector acceptance at 60m and tau neutrino cross-section
 - ✓ DONUT/SHiP → $1/(0.36 \times 0.2 \times 0.52) \sim 27$
- ✓ Proton on target for SHiP and DONUT
 - ✓ SHiP/DONUT → 2×10^{20} / 3.6×10^{17} ~ 560
- ✓ Overall advantage against DONUT → $560/26 \sim 20$
- Expected yield with same target mass (260kg)
 - ✓ (9 -1.5BG) x 20 ~ 150 tau neutrino events
- Assuming 6 tons of target mass
 - ✓ 6000kg / 260kg x 150 ~ 3500 (tau and anti tau neutrino interactions)
- ✓ Assuming OPERA like brick (8.3kg) → 750 bricks

Expected neutrino interactions

- ✓ Basic number from beam simulation / 10¹⁸ pot
 - ✓ 300 v CC/190kg → 300 v CC/ 22 bricks → 13 v CC / brick
 - ✓ 2600 v CC / brick / 2x10²⁰ pot
- ✓ Other way around : Starting from 3500 tau in 6 tons
 - ✓ 30% efficiency → 10000 tau
 - $\checkmark~$ Expected relative ν_{τ} yield : ν_{τ} / ν_{int} ~ 0.5%
 - ✓ 2 x 10⁶ v_{int} in 750 bricks for 2 x 10²⁰ pot
 - ✓ 2700 v_{int} / brick / 2 x 10²⁰ pot


✓ 10 times of exchange reduce to 270 / brick

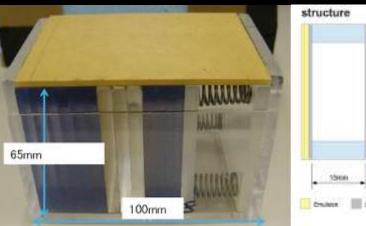
Magnetized option with CES



Charge determination not only for 18% of muonic decay, but also for hadronic decay mode to identify anti neutrino.

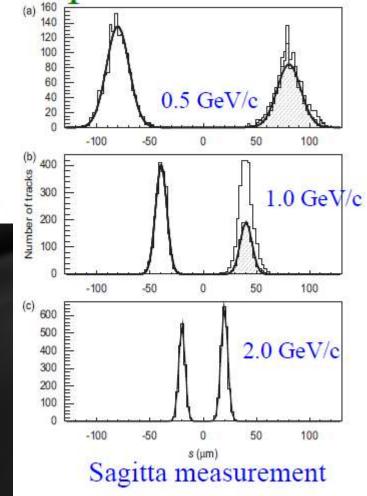
Detector design with CES

Target region: 15 mini-walls One wall contains 48 bricks Mass ~ 8.3kg x 48 x 15 ~ 6 ton


Charge determination not only for muonic channel.

MC simulation of CES provide 53% charge determination for hadrons

$$\frac{\sum_{i=1}^{N} br_i \varepsilon_i}{br_\mu \varepsilon_\mu} \simeq \frac{18 \cdot 0.95 + 50 \cdot 0.53 + 15 \cdot 0.53^2}{18 \cdot 0.9} \simeq \frac{18 \cdot 0.95 + 50 \cdot 0.53 + 15 \cdot 0.53^2}{18 \cdot 0.9}$$

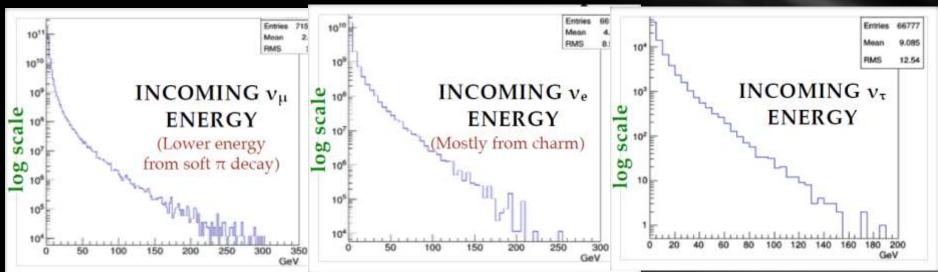


Compact Emulsion Spectrometer

structure

Three emulsion films interleaved with 1.5cm air gap in magnetic field (~1T), 3cm thick compact spectrometer. H. Shibuya et al, NIM A592 (2008) 56

Tau Neutrino detector

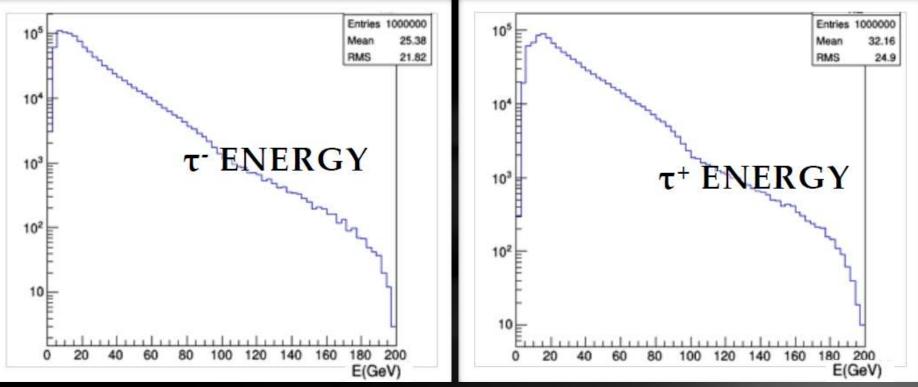

- ✓ 750 bricks to be replaced 10 times, equivalent to 5400 m² of emulsion films ~ 5% of the OPERA production (Fujifilm, Japan)
 - ✓ New film production (@Nagoya)
 - ✓ The exposure will last a few months. T ~ 20 degree is fine, to be kept constant within 1 degree. Humidity around 50 to 60%.
- Scanning time with modern automated technologies is not an issue.
- ✓ 750 Brick manufacturing every 6 months demands a single piling station (BAM like or semiautomatic) + manual Al tape wrapping station.

Neutrino beam in SHiP

0.4%

7.1%

Muon neutrino have low energy component from pion decay.


Electron neutrino is mostly coming from charm decay. Good for charm production normalization.

Tau neutrino is coming from Ds and tau decay

New spectrum with 10λ target design is under preparation. Current value is based on 5λ W + 3m iron stopper.

Tau neutrino in SHiP beam

Average interacted tau neutrino energy is 42GeV for both tau and anti-tau neutrino.

Summary and prospect

Unique opportunity to study tau neutrino physics

- We have only 9 (DONUT)+4 (OPERA) tau neutrino CC interactions. Study with 3500 tau neutrino interaction can be done in SHiP.
- Unique chance to study tau and anti tau neutrino crosssection and anti neutrino charm production.
 - ✓ 11,000 charm + 3500 anti-charm (2000 + 32 in CHORUS)
- ✓ Technical Proposal is under way (2015)
 - ✓ Physics run from 2023.
 - ✓ Detector design is also under way, TDR in 2018.
- Additional experimental study is required on tau neutrino flux. Better than 10% accuracy is mandatory.
 - Separated experiment is under consideration.

The first skipper of the SHiP

Andrey Golutvin (Imperial College London)

So far 170 crew on board from 44 groups 13 countries.

Thank you

15th December 2014 @ CERN

Backup

Important issues for emulsion

> Integrated μ flux (<< 10⁶ / cm2)

- Fermilab E653 : beam density @ 5 x 10⁵ /cm2
- Downstream density with 2ry tracks ~ 10⁶ /cm2
- Both passive and active (magnet) shield is in study
 - Expected muon flux without shield ~ 350kHz/cm²
 - > 10⁻⁶ reduction → 0.35Hz/cm² and 10 times of emulsion exchange in 5 years.
 - → 4.5×10¹³ pot in 1s : 2×10¹⁹ pot in a half year → 4×10⁵ cycles
 - \rightarrow 1.4x10⁵ μ /cm²
 - New active magnet design provide no muon BG for 10⁹ pot

Combination of active and passive shield will suffice.