The atmospheric neutrino measurements by IceCube

Chiba University Takao Kuwabara

新学術領域研究「ニュートリノフロンティア」研究会 2014

IceCube neutrino observatory

- 3D cosmic ray detector
 - Completed Dec 2010 at SouthPole, 2835m
 - IceTop: Surface array of ice tank
 - IceCube Array: In-ice array of DOMs
 - DeepCore: Infill array for lowE extension
 - IceCube measures
 - Cosmic ray showers from above
 - Neutrinos from all directions
 - v_{μ} -induced μ from below
 - all flavors starting inside detector

Digital Optical Modules

- 86 in-ice strings
- 60 DOMs per string
- 125m inter-string spacing
 17m DOM spacing

Atmospheric Neutrino Flux

- Conventional v_{μ} and v_{e}
 - Important background to evaluate prompt ν and astrophysical ν
 - From π and K decay Shape of spectrum depends on π to K ratio
 - Several IceCube works at past Still large systematic uncertainties left
 - For complete understanding, combined analysis with low energy experiment, like Super-K, is strongly required

This analysis will determine v_{μ} and v_{e} spectrum from first year of completed IceCube 86 string data

Atmospheric CR μ and $\nu_{\mu,e}$ flux simulation

Muon bundles with **CORSIKA**

- Input CR spectrum : E_{cr}^{-2}
- 5 component (P, He, N, Al, Fe)
- Weight: Polygonato
- Zenith angle: 0 90 deg

Neutrinos with neutrino generator (NuGen)

- Input $v_{\mu,e}$ spectrum : E_{ν}^{-2}
- Weight: Honda+GaisserH3a, Enberg
- Zenith angle: 0-360 deg

u_{μ} Track Event Selection

Level-1 data (>2kHz)

require typical Trigger Condition (recording > 8 channels in 5 μ sec) by the DOMs passed Coincidence Condition (one of nearby DOMs has record in $\pm 1 \mu$ sec)

Level-2 data (~40Hz)

- first angular reconstruction (min quality)
- up-going + large-charge down-going events
- sig/bkg ~ 10⁻³

Level-3 data (~2mHz)

- good angular reconstruction (σ <5deg)
- up-going event only
- bkg CR muon ~1%

u_{μ} Track Event distribution, Level 3 data

* Burnsample = 10% statistics data

- 5823 burn sample events remained after cuts
- Good data/MC agreement
- Primary energy range: 100GeV-20TeV Median ~ 800GeV

Reconstructed muon energy and zenith angle distribution

Likelihood fit analysis (v_{μ} track)

- 2D distribution of reconstructed muon energy and zenith angle for fitting
- Physics parameter
 - $1+\alpha$, Deviation from reference conventional flux (Honda+H3a model)
 - $-\Delta\gamma$, Change in spectrum slope
 - $R_{K/\pi}$, ratio of spectrum weighted moments to produce K and π (baseline $R_{K/\pi}$ = 0.149)
- Nuisance parameter
 - $-\epsilon$, DOM efficiency
- Minimizer (ROOT Minuit2)

Preliminary Fit Result (ν_{μ} track)

v_e Cascade Event Selection

Level-1 data (>2kHz)

require typical Trigger Condition (recording > 8 channels in 5 μ sec) by the DOMs passed Coincidence Condition (one of nearby DOMs has record in $\pm 1 \mu$ sec)

Level-2 data (~20Hz)

- first cascade reconstruction
- sig/bkg ~ 10⁻⁶

Level-3 data (~0.1Hz)

- containment cut
- sig/bkg ~ 10⁻⁴

Level-4 data (~40 μ Hz)

- BDT selection
- Conventional v_{μ} (69% [CC 60%, NC 40%])
- Conventional v_e (17% [CC 92%, NC 8%])

10

- CR muon (11%)
- Prompt+Astro (3%)

Cascade events

Likelihood fit in 3D space (Cascade)

Preliminary Fit Result (Cascade)

Results

 ν_e

Summary

- v_{μ} track events and $v_{\mu} + v_e$ cascade events have been selected from the first year of the completed IceCube data
- Applied preliminary likelihood fit analysis
 - ν_{μ} track events
 - Flux normalization : $1.07 \pm 0.18 \times (Honda+H3a)$
 - Spectrum index : +0.07±0.04 flatter
 - $R_{K/\pi}$: +11±42% from baseline
 - Cascade (ν_{μ} and ν_{e}) events
 - Very preliminary, $\Delta \gamma$ and $R_{K/\pi}$ are not implemented yet
 - Flux normalization of v_{μ} : 0.59^{+0.40}_{-0.30} x (Honda+H3a)
 - Flux normalization of $v_e: 1.62^{+1.48}_{-1.25}x$ (Honda+H3a) more K contribution?

Outlook

- Joint analysis with Super-K
 - Super-K reported their spectrum (at Neutrino2014)
 - High statistical Super-K result at low energy
 reduce systematic uncertainty at high energy end
 - Wide energy range coverage -> good $R_{K/\pi}$ determination
- Use IceCube/DeepCore trigger
 - to extend energy (E_{ν}^{min} : 100GeV->10GeV)
 - to make overlap with Super-K energy range