新学術領域研究「ニュートリノフロンティア」研究会 2014 公募研究

"Theoretical Study for Unveiling the Origins of VHE-Neutrinos in the Near Future"

Astrophysical Big Bang Laboratory Shigehiro Nagataki

Massive Stars Explode. Why?

Simulation by T. Takiwaki (RIKEN)

Some Massive Stars Explode as Gamma-Ray Bursts. Why?

Supernovae are Origin of Heavy Metals. But what kind of metals are really produced?

Simulation by A. Wongwathanarat (MPA → RIKEN)

S. Wanajo (RIKEN)

Origin of Gold?

Origin of Uran?

Why are SNe/GRBs so Bright?

A. Tolstov (RIKEN→IPMU)

Y. Teraki(RIKEN)

H. Ito (RIKEN)

J. Matsumoto (RIKEN)

Are Gamma-Ray Bursts the Largest Particle Accelerators?

Extra-Galactic Neutrinos?

The Hot Spot of Ultra-High Energy Cosmic Rays found by Telescope Array Experiment 2014 Figure (Imagination): © A. Roquette (ESO)

Lots of Mysteries & Physics in Supernova Remnants

S.H. Lee (Stanford→ RIKEN→JAXA)

M.Ono (RIKEN→Kyushu U.)

Observation

Cassiopeia A (350 years old) By Chandra Satellite Simulation by D. Warren

Cosmic-Ray Production? Morphology? Composition? Galactic Neutrinos?

D. Warren (NCSU→RIKEN)

Can Gamma-Ray Bursts be the Longest Cosmic Rulers? From WMAP HP. Modified.

Maria Dainotti, Awarded an Order of Merit of the Italian Republic for the Discovery (2013).

Our Group Members and Collaborators

Small Radi From 1st April 2013

 \sim Toward Full-Understanding of Supernovae and GRBs \sim

- Central Engine: Nagataki (PI), Takiwaki , Barkov
- Explosive Nucleosynthesis: Wongwathanarat, Wanajo, Mao
- Shock Breakout/Light Curve/Spectrum: Tolstov, Blinnikov (ITEP), Tominaga (Konan), Tanaka (NAOJ), Maeda(Kyoto)
- Propagation of Relativistic Jet: Matsumoto, Mizuta
- Gamma-Ray Burst Emissions: Ito, Teraki, Pe'er (UCC)
- Afterglow (X-ray/Opt/IR/Radio) Emissions: Warren, Ellison (NCSU), MacFadyen(NYU).
- Remnants: Lee, Ono, Warren, Slane (CfA), Patnaude (CfA)
- UHECRs, VHE-neutrinos/gamma-rays: Kusenko (UCLA), He (PAO), Allard(APC)
- GRB Cosmology: Dainotti
 Radi

... and More!

Neutrino/GW Signals from a SN

Time Evolution of Neutrino Luminosity

Signal of Gravitational Wave in Freq. Space

T. Takiwaki (RIKEN)

Neutrino Oscillations in a Core-Collapse Supernova

Kawagoe. Takiwaki. Kotake in prep

Simulation by T. Takiwaki (RIKEN) with K-Computer.

We are very interested in calculating neutrino spectrum taking into account Neutrino Oscillation Effects, which should be confirmed by SK/HK when a Core-Collapse supernova will happen in Milky Way!

Gravitational Waves by KAGRA are also crucial to confirm our theory on CC-SNe.

§ Toward Unveiling the Origins of VHE-Neutrinos

A New Window Has Opened!

by the IceCube Collaboration

Source Candidates

Extra-Galactic Objects (= Outside of Milky Way)

(Most) Powerful Obs. in the universe.

Active Galactic Nuclei (AGN)Gamma-Ray Burst (GRB)Star Burst GalaxyGalactic Objects (= Inside of Milky Way)(Most) Powerful Obs. in Milky Way

Pulsar (Neutron Star)Supernova Remnant (SNR)Lack of Power?Lack of Power?

Hypernova Remnant (HNR) Fermi Bubble

c.f. Size of the Universe~3000Mpc.
Typical Distance between AGNs~50Mpc.
Typical Distance between Galaxies~(1-10)Mpc.
Typical Size of a Galaxy ~10kpc
Typical Size of a Supernova Remnant~10pc.

How to Pin Down the Sources?

- Extra-galactic: Time-Correlation (GRBs, AGN Flares,...).
- Galactic: Anisotropy of Arrival Direction.

Sky map and the significance

A Possible Scenario: Extra-Galactic Case Time & Spatial Correlation

VHE-Neutrinos can be Detected by IceCube with Simultaneous Detection of a Gamma-Ray Burst

Swift

IceCube

Neutrinos

e.g. Murase & S.N. PRD 06 Murase & S.N. PRL 06

Another Possible Scenario: Galactic Case Anisotropic Distribution

GeV Gamma-Rays TeV-PeV Neutrinos

TeV-PeV Neutrinos Look More Special than GeV Gamma-Rays? Something Special at the Galactic Center Region?

Something Special at Galactic Center Region?

NASA's Fermi telescope reveals best-ever view of the gamma-ray sky

GeV Gamma-Rays

Supernova Remnant (SNR)

Pulsar (Neutron Star)

TeV-PeV Neutrinos

Hypernova Remnant (HNR)?

Fermi Bubble?

How Special is a HNR?

Event Rate Energy Obs.

1 per 100yrs 10^51erg Many

Supernova Remnant (SNR)

1 per 10⁵yrs 10⁵2erg Not Found Yet in Milky Way

Hypernova Remnant (HNR)?

UHECRs may be Coming from Past GRBs Happened in Milky Way

Spectrum and Composition of UHECRs

Calvez, Kusenko, S.N. PRL (2010)

Composition of UHE-CRs Auger Collaboration 10

Our SNR Collaborations

and More!

S.H. Lee (RIKEN \rightarrow JAXA)

M.Ono (RIKEN→Kyushu U.)

D. Warren (NCSU→RIKEN)

D. Ellison (NCSU)

P. Slane (Harvard)

D. Patnaude (Harvard)

F. Reopke (Wurzburg Univ.)

Successful Interpretation & Understanding of SNRs

S.H. Lee (RIKEN→JAXA)

Our SNR Code can Calculate CR Production. Trapped Component of CRs Explain SNR Obs. Very Well!

Let's Apply Our SNR Code to a HNR

Dr. Lee (RIKEN→JAXA)

Dr. He (UCLA/PMO)

Prof. Kusenko (and his wife) (UCLA/Kavli IPMU)

Parameters

- $E_{SN} = 3e52 \text{ erg} (c.f. SN1998bw)$
- $M_{ejecta} = 14 M_{Sun}$
- Age = 1,000 yr (from 20 yr)
- $dM/dt = 3e-5 M_{Sun}/yr$
- $v_{wind} = 10 \text{ km/s}$
- $\sigma_{\text{wind}} = 0.03$
- $d_{HNR} = 8.5 \text{ kpc}$
- Cosmic abundance everywhere
- Instantaneous temp equilibration

<u>Output</u>

 $\begin{array}{l} R_{\rm HNR} = 11.7 \ {\rm pc} \ (n_{\rm wind} \sim 0.04/{\rm cc}) \\ R_{\rm RS} &= 8.1 \ {\rm pc} \\ R_{\rm CD} &= 8.7 \ {\rm pc} \\ V_{\rm FS} &= 16,500 \ {\rm km/s} \ @ \ 50 \ {\rm yr} \\ & 8,900 \ {\rm km/s} \ @ \ 1,000 \ {\rm yr} \\ & (mildly \ relativistic \ shock!) \\ E_{\rm CR}/E_{\rm SN} = 30\% \ (\chi_{\rm inj} = 3.70) \\ M_{\rm CD-FS} = 33 \ M_{\rm Sun} \\ ({\rm need \ to \ truncate \ wind \ to \ merge \ w/ \ ISM}) \end{array}$

Escaping CRs are Relevant for IC Events

Muon neutrino spectra (with full oscillation mixing)

Trapped Component

Escaped Component!!

HNR escaping proton vs time as injection term Q(p,r,t) Age = 10^{4} yr

dN/dt particle luminosity per bin

In 50 log time steps

Our Future Step 1: Calculating pp-Interactions between Escaped CRs & gas/molecular clouds

H2+H Density from GALPROP

We put a HNR at the Galactic Center Region.

We solve Diffusion Eqs. For the Escaped CRs.

We calculate pp-Interactions Between Escaped CRs & Ambient Matter.

Our Future Step 2: Need to Care about Galactic Ridge

Contour: Dense Molecular Cloud (CS line) Aharonian+06

A SNR Happened 10⁴yrs ago? Aharonian+06 A SNR Happened 10⁴-10⁵yrs ago? Macias+14 Comparison of Integrated Flux Between Gamma-Rays & Neutrinos

$$-30^{\circ} < l < 30^{\circ} -4^{\circ} < b < 4^{\circ}$$

Our Road Map

- Finding a HNR/CR-Diffusion Model Compatible with Current Gamma-Ray/Neutrino Obs.
- Draw Maps of Arrival Direction of Neutrinos that will be Detected by IceCube in Future (5yr, 10yr, 100yr,...).
- Will the Anisotropy (= Galactic Origin) be Confirmed in Future by IceCube?
- Other Scenarios: Dozens of SNRs, Fermi Bubble, DM...

Thank You Very Much.

• PI: Nagataki

From 1st Apr. 2013

- Current PDs: Ito, Matsumoto, Dainotti, Barkov, Teraki, Wongwathanarat, Takiwaki
- Almini: Ono (Kyushu Univ.), Lee(JAXA), Tolstov(Kavli IPMU), Mao(Kyushu Univ.)
- From FY2015: Warren, Yokokura, Tanaka, and More!

