OPERA Vτ Appearance detection

* Budapest Austria Hungary Ljubljana Zagreb 730km Saralevo Bosnia and Herzegovina san Matino an Marino **LNGS** Italy Podgorica Isola d'Elba Citta del Vaticano Corse (Corsica) solaMaddalena < Ev > (GeV)17 0.9 % $(v_e + \overline{v_e}) / v_\mu$ $\overline{\nu}_{\mu} / \nu_{\mu}$ 2.0 % Negligible v_{τ} prompt Sec. $P(\nu_{\mu} \rightarrow \nu_{\tau}) \sim \sin^2(2\theta_{23}) \cdot \sin^2\left(1.27 \cdot \Delta m_{23}^2 \cdot \frac{L}{E}\right) \sim 1.7\%$

 $\sin^2 2\theta_{23} = 1.0$, $\Delta m_{23}^2 = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2$

1

Final performances of the CNGS beam after five years (2008 \div 2012) of data taking

Overall 20% less than the proposal value (22.5)

2nd vt event

τ -> 3h

3rd vt event

2013

$\tau^{\text{-}} \rightarrow \mu^{\text{-}}$

4th vτ event

τ -> πν

$\nu\mu \rightarrow \nu\tau$ Observation paper has been published in PTEP. Please cite this paper when you will refer OPERA.

http://arxiv.org/abs/1407.3513

Prog. Theor. Exp. Phys. 2014, 101C01 (10 pages) DOI: 10.1093/ptep/ptu132

Letter

Observation of tau neutrino appearance in the CNGS beam with the OPERA experiment

OPERA Collaboration

N. Agafonova¹, A. Aleksandrov², A. Anokhina³, S. Aoki⁴, A. Ariga⁵, T. Ariga^{5,*},
T. Asada⁶, D. Bender⁷, A. Bertolin⁸, C. Bozza⁹, R. Brugnera^{8,10}, A. Buonaura^{2,11},
S. Buontempo², B. Büttner¹², M. Chernyavsky¹³, A. Chukanov¹⁴, L. Consiglio²,
N. D'Ambrosio¹⁵, G. De Lellis^{2,11}, M. De Serio^{16,17}, P. Del Amo Sanchez¹⁸,
A. Di Crescenzo^{2,11}, D. Di Ferdinando¹⁹, N. Di Marco¹⁵, S. Dmitrievski¹⁴, M. Dracos²⁰,
D. Duchesneau¹⁸, S. Dusini⁸, T. Dzhatdoev³, J. Ebert¹², A. Ereditato⁵, R. A. Fini¹⁶,
T. Fukuda²¹, G. Galati^{16,17}, A. Garfagnini^{8,10}, G. Giacomelli^{19,22,†}, C. Goellnitz¹²,
J. Goldberg²³, Y. Gornushkin¹⁴, G. Grella⁹, M. Guler⁷, C. Gustavino²⁴, C. Hagner¹²,
T. Hara⁴, T. Hayakawa⁶, A. Hollnagel¹², B. Hosseini^{2,11}, H. Ishida²¹, K. Ishiguro⁶,
K. Jakovcic²⁵, C. Jollet²⁰, C. Kamiscioglu^{7,26}, M. Kamiscioglu⁷, T. Katsuragawa⁶,
J. Kawada⁵, H. Kawahara⁶, J. H. Kim²⁷, S. H. Kim²⁸, N. Kitagawa⁶, B. Klicek²⁵,
K. Kodama²⁹, M. Komatsu⁶, U. Kose⁸, I. Kreslo⁵, A. Lauria^{2,11}, J. Lenkeit¹²,
A. Ljubicic²⁵, A. Longhin³⁰, P. Loverre^{24,31}, M. Malenica²⁵, A. Malgin¹,
G. Mandrioli¹⁹, T. Matsuo²¹, V. Matveev¹, N. Mauri^{19,22}, E. Medinaceli^{8,10},
A. Meregaglia²⁰, M. Meyer¹², S. Mikado³², M. Miyanishi⁶, P. Monacelli²⁴,

7

Status of the Analysis

■ 1st ■ 2nd ■ 1st tobe ■ 2nd tobe

brick	Location	DS	Expected Final sample	Location complete	DS complete
1st	5878	5575	~6000	0.98	0.93
2nd	443	420	~700	0.63	0.6
all	6321	5995	~6700	0.94	0.89

Expected form Reference data of 2008-2009 Run. (Non selection sample)

- 1) Decay search Finished Rate ~ 89 %
 (conventional analysis sample)
 + 700 events within 2015.
- 2) Improvement on Scanning Speed & Quality HTS BDT

+ 800 events? until mid of 2016.

3) Improve $\,\Delta m^2$.

by Including border decay candidates (Present value $1.8 \sim 5.0 \times 10^{-3} \text{ eV}^2$) 並列画像処理PC群

超広視野レンズ

72chカメラヘッド

超高速原子核乾板読み出し装置 HTS (Hyper Track Selector)

Development of the read-out speed of the Automated Nuclear Emulsion Read-out system

10

Atmospheric Neutrino Events in OPERA

Nuclear Emulsion

- Long history in Neutrino Research -

- 1978-1983 Fermilab E531 ~ 100kg charm $v\mu$ -> $v\tau$
- 1990-2000 CERN WA95 CHORUS ~ 1 ton $v\mu$ -> $v\tau$ charm
- 1994-2001 Fermilab E872 DONUT ~ 1 ton

$u \tau$

• 2000- CERN CNGS01 OPERA 1250 ton $v\mu$ -> $v\tau$

R &D of Advanced high resolution Nuclear Emulsion Neutrino detector (計画研究 B01)

Aichi Univ. of Edu., Kobe, Nagoya, Nihon, Toho

Nuclear Emulsion Gel Production Machine

Installed in Nagoya Univ.

R&D Machine

~1kg/lot

From 2010

Composed by a Maker Related to Fujifilm

Emulsion Gel R&D

• R&D of recipes of Emulsion Gel matched to the physics aim.

- With the help of OB engineers of FUJI film.
- By Modern Emulsion Gel production machine installed in Nagoya.

Nano Imaging Tracker (NIT) Type Directional Dark Matter detection

OPERA Type

Neutrino exp, Radiography γ Telescope (GRAINE)

• Grain size 20nm ~ 400nm

Neutrino Coherent Scattering

• Sensitivity control by impurity doping & chemical treatment

Production

- Re-realize Gel Mass production --- by ourselves
- 1) New Machine Installation (2014)

 \rightarrow Scale up 3.5 kg/lot

- $\rightarrow 1^{st}$ User: GRAINE
- 2) Contract to rent machine time from a company for the production of the Gel using our recipe & under our control. No quality assurance by the maker. We will do.

 \rightarrow 20kg/lot Mass Production

Mass Pro Machine ~3.5kg/lot

From 2014

Composed by Nagoya Univ. Machine shop.

Installed in Nagoya Univ.

Production

- Re-realize Gel Mass production --- by ourselves
- 1) New Machine Installation (2014)

 \rightarrow Scale up 3.5 kg/lot

- $\rightarrow 1^{st}$ User: GRAINE
- 2) Contract to rent machine time from a company for the production of the Gel using our recipe & under our control. No quality assurance by the maker. We will do.

 \rightarrow 20kg/lot Mass Production

Talks relating to Emulsion exp. in this Meeting Running project

<u>Aoki S. (Kobe):</u> GRAINE project: First massive production and use of "High sensitive emulsion gel film"

<u>Fukuda T.(Toho):</u> Neutrino experiments with nuclear emulsion at J-PARC

Proposal prep.

<u>Komatsu M.(Nagoya):</u> Tau Neutrino physics in SHiP at CERN

Idea

<u>Sato O.(Nagoya)</u>: An Experiment to observe neutrino nucleus coherent scattering