Status of LAr TPC R&D (2)

2014/Dec./23 Neutrino frontier workshop 2014 Ryosuke Sasaki (Iwate U.)

Table of Contents

Development of generating electric field in LAr TPC

- Introduction
 - Generating strong electric field is one of key R&D subjects toward realization of a large scale LAr TPC
- Generation of strong electric field
 - Methods of generating electric field
 - HV generator
 - Understanding of characterization using circuit simulation (LTspice)
 - Optimization of elementary device models
 - Results of circuit simulation
- Summary

Introduction

Principle of LAr TPC

- TPC is stored inside the cryostat
- The cryostat is filled with LAr
- 1. Charged particles flying in LAr TPC
- 2. Flying particles reacts with LAr in TPC, the ionization electrons are generated
- 3. Ionizing electrons under the force of the electric field, drift to the anode side
- 4. The anode is divided into a grid-like, obtains the position information of the generated ionization electrons in two dimensions (x, y)
- 5. And obtaining position information of the zdirection from the time it took to drift to the anode from the generation position
- 6. The track of flying particles can be reproduced in a three-dimensional

Agendas to generating electric field

- 1. When electric field is weak, ionization electrons can be captured by impurities before reaching the anode
 - \rightarrow More than *ve*=1.6mm/µsec required
 - \rightarrow More than E=500V/cm required

2. When electric field is non-uniform, a mismatch between readout and generated position can happen

Agendas:

Today's discussion is about this. 1. Generation of strong electric field (More than 500V/cm)

2. Uniformity of electric field

R&D on fundamental technology of HV using a small LAr detector (drift length 10cm)

Configuration of TPC

Field Shaper placed between the cathode - anode for the uniformity of the electric field in the prototype (drift length 10cm) in development. Also, it sets out 500V/cm by supplying voltage to electrode (in the figure).

Generation of strong electric field

Two possible methods of generating strong electric field

- 1. Supplying HV from the outside of the cryostat through the feedthrough
- 2. Generating HV within the cryostat (filled in LAr)

When LAr TPC comes to be a large size (drift length several tens m), it's necessary to supply a voltage of several MV for generating electric field of 500V/cm

→ It's difficult to supply from the outside of the cryostat by breakdown limit of feedthrough in MV supply

We adopt option 2:

Consider the Cockcroft-Walton(CW) circuit as the device

Cockcroft-Walton(CW) circuit

Feature

- This circuit generates a high DC voltage from a low voltage AC
- Circuit that combines a capacitor and diode
- Vout = 2Vin × (Number of stages)
- Since it can be output from each stage, it's compatible with TPC structure

Designed a CW circuit

Designed a 10-stage CW circuit for supplying HV in the prototype:

Understanding of CW circuit using circuit simulation (LTspice):

We will compare with an actual measurement in next step.

<u>Circuit simulation is carried out by simulating the actual operating</u> <u>temperature (-186 deg C)</u>

→ Important to use actual properties of each elementary devices at the low temperature

We measured the low temperature properties(-196 deg C), and then create and optimize elementary device model in simulation

Measurement properties of elementary device (Capacitor)

Measure the low temperature properties of the capacitor by LCR meter

filled with LN2(-196 deg C)

put in a container

put a capacitor in the socket

LCR meter (HP 4275A)

Capacitor PHE450 (EVOX RIFA)

	sample_1	sample_2	sample_3	sample_4	sample_5	Average
Measurement results (-196 deg C)	33.63	33.40	33.00	33.32	33.00	33.27

Measurement result at room temperature(20 deg C) is 32.47nF(average)

According to measurement results, create a elementary device model as the capacitance is 33.27nF

Measurement properties of elementary device (Diode)

Measure the low temperature properties of the diode by micro-ammeter

Create a model of diode to reproduce the measured results

 \rightarrow Making a comparison between the created model and measurement results in the next slide

The successful creation of a model that low-temperature characteristics match

 \rightarrow Characterization by circuit simulation

Results of circuit simulation (LTspice)

There is -1.6% of discrepancy of voltage at 10th stage compared with first stage

- A large influence of device characteristics in lower stage
- Since the device is increased along with the increase of the number of stages, the output voltage becomes non-linear
 - \rightarrow We will compare with actual measurement in next step

Summary

Development of generating electric field in LAr TPC

Generating electric field is one of key R&D subjects toward realization of a large scale LAr TPC

Agendas:

1. Generation of strong electric field

We are developing CW circuit HV generator

- → Circuit simulation based on actual measurement of the elementary device properties at the low temp. is developed
- \rightarrow We will compare with actual measurement

2. Uniformity of electric field

Understanding with simulation software(COMSOL) is in progress

 \rightarrow Plan to study with cosmic ray measurement