新学術領域研究「ニュートリノフロンティア」公募研究

Development of new measurement technique of ⁴⁸Ca ß decay background for the study of ßß decay of ⁴⁸Ca

> Sei Yoshida Physics Department, Osaka University

> > Neutrino Frontier Workshop @ FujiCalm December 23rd, 2014

Introduction of BB Decay

• Two decay modes are usually discussed for BB decay:

- (1) $2v\beta\beta$ decay : $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v_e}$
 - allowed by the Standard Model.
 - already observed in more than 10 isotopes.
 - Lifetimes ; T = $10^{18} \sim 10^{20}$ yr

② Ονββ decay

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

- process beyond the Standard Model.
 - Lepton number violation
 - non-zero neutrino mass
 - <u>Majorana particle</u>
- not observed yet.
 - except for the KKDC claim, still alive ?
- predicted lifetimes ; τ > 10²⁶ yr

Neutrino Frontier Workshop

m.

 $v_e = \overline{v}_e$

Physics of Ovßß Decay

- Ονββ search is the useful tools to explore unknown neutrino properties,
 - Origin of neutrino mass, Dirac or Majorana ?
 - If neutrino is Majorana, $0\nu\beta\beta$ will be observed !
 - Absolute mass scale ?

The effective Majorana mass is calculated by

 $T_{0v}^{-1} = G_{0v}(Q_{\beta\beta},Z) |M_{0v}|^2 < m_v >^2 \text{ (mass term),}$ $\langle m_v \rangle = |\Sigma U_{ei}^2 m_i|$

Mass hierarchy

(normal, inverted or degenerate) ?

- CP Phase in the neutrino mixing matrix ?
- Sterile neutrino?

•

- Neutrino is Majorana particle, →
 - $\Delta L \neq 0$ (Lepton number violation) \rightarrow Leptogenesis ?
 - See-Saw mechanism ?
 - can explain tiny neutrino masses

Neutrino Frontier Workshop

Signature of OVBB

S.R.Elliot and P.Vogel, Ann. Rev.Nucl.Part.Sci.52(2002)115.

 \bullet continuum to $Q_{\scriptscriptstyle BB}$ end point

- two electrons from vertex
- production of daughter isotope

The shape of the two electron sum energy spectrum enables to distinguish the two different decay modes. \leftarrow <u>Good energy resolution</u>.

• The predicted $T_{1/2}$ is long (~ 10²⁶yr). \leftarrow Low BG condition

CANDLES

@Kamioka Observatory

- CANDLES is the project to search for Ovßß decay of 48Ca.
- Detector (CANDLES-III)
 - Main detector : CaF₂ scintillators(~300kg)
 - Liquid Scintillator : Active Veto (~ 2.1 m³/1.7 tons)
 - PMTs : 13inch x 48 & 20inch x 14
 - Installed in 3m⁰ × 4m^h (Water tank)
- Site: Kamioka (~1000 m depth)

Neutrino Frontier Workshop

Importance to measure β -decay rate

- To search $Ov\beta\beta$ decay, it is important to estimate BG at $Q_{\beta\beta}$ -value, especially BG from high energy tail of $2v\beta\beta$ spectrum.
- We also have to measure β-decay rate of ⁴⁸Ca, precisely, to estimate 2vββ decay rate. The event rate below 3 MeV, there might be large amount of BG due to natural radioactivities, ²¹⁴Bi (Q=3.0MeV), ²⁰⁸Tl (E_v=2.6MeV).

- The lower limit of β -decay half life (1.1 x 10²⁰ yr) was obtained for ⁴⁸Ca so far.
- Theoretical calc. ; 7.6 × 10²⁰ [1] ~ 1.1 × 10²¹ [2] yr

Neutrino Frontier Workshop

2014/12/23

Measurement of B-decay rate

An enriched ⁴⁸CaCO₃ powder (⁴⁸Ca; 20.18 g) was measured for 797 hours with 400 cc low-background HPGe detector.

⁴⁸Sc

Q_b= 3.99MeV

10.0 %

90.0 %

T1/2=43.7 Hour

⊾ 6⁺

- For single β transitions to $^{48}\text{Sc},$
 - 0.71×10²⁰ y (6+, G.S.)
 - 1 .1 × 10²⁰ y (5+)
 - 0.82 × 10²⁰ y (4+)

0+

⁴⁸Ca

 β decay : Q_{\beta}= 0.28MeV T_{1/2,\beta} > 1.1 \times 10^{20} 年

 $2v\beta\beta$ decay : $Q_{\beta\beta}$ = 4.27 MeV T_{1/2,2vbb} 4±2 x 10¹⁹ yr

using radiative equilibrium

• It is not realistic to increase enriched ⁴⁸Ca, because it is so expensive, and not available. Neutrino Frontie WWehpropose new measuring atechnique.

1038 keV

1312 keV

983 keV

48**T**

New Method for B-decay Measurement

- Using radiative equilibrium of ${}^{48}Ca \rightarrow {}^{48}Sc \rightarrow {}^{48}Ti$.
- Count γ-rays from ⁴⁸Ti* by low background HPGe detector.
 - It is available at sea level lab.@ Osaka Univ.
- Using large amount of ^{nat.}Ca source (~ 100 kg)

Test of measuring technique

- Requirements for ion+ exchange resin,
 - Trap Sc³⁺ ion efficiently, more than Ca²⁺
 - Keep trapping Sc³⁺ in the resin longer than T_{1/2} of ⁴⁸Sc (44 hours)
 - To increase the ⁴⁸Ca source,
 - Increase flow rate of circulation
 - Increase concentration of Ca solution (Solubility of CaCl₂ : 74.5 g/100mL @20 $^{\circ}\mathrm{C}$)
- Trial measurement (Toy level)
 - Firstly, flow the Ca²⁺ solution. Ca ions are trapped in the resin.
 - After the resin is saturated by trapped Ca ions, flow Sc³⁺ solution.
 - Measure the Ca, Sc amount in the output flow by the flame spectrometer.

Ion exchange resin Manufacturer: Bio-rad AG MP-50 Resin 500g CAS: 143-0841

ions Ton exchange resin Ca, Sc and visit flow Cas: 143-0841 C

Neutrino Frontier Workshop

Measuring Ca, Sc concentration

Measure Ca & Sc concentration with flame spectrometer (炎光分析 •

- Sensitivity of flame analysis
 - Ca ; ~ 0.1 ppm

Sc

O (w/o Ion)

- Sc ; ~ 10 ppm
- Difficult to measure Sc concentration in dense Ca solution since the Ca flame spectrum overlaid on the Sc flame peak.

→ Overcome , later Neutrino Frontier Workshop

Test result for concept

- Sc³⁺ can be replaced with Ca²⁺ in the ion exchange resin, thus the principle of the technique is O.K.
- Next question ; Same for "small" amount of Sc in the "dense" Ca solution ?

Trial Experiment

• <u>To confirm trapping Sc³⁺ one by one, we produced radioactive ⁴⁶Sc, as a</u>

Production of ⁴⁶Sc Tracer

⁴⁶Sc Activity Estimation

Produced ⁴⁶Sc activity was estimated by conventional method, γ-ray counting with HPGe detector

 HPGe detector can measure an order of 10mBq. Enough activity to test the principle of Sc³⁺ trapping/concentrating method.

Trial Measurements

MINIMER ININGS IN DESIGNING

125g

- The detection eff. of HPGe detector •
 - Monte Carlo code is well tuned for the use of material screening of purity.

Peak Energy (kev)	Efficiency (%)
984	1.26
1038	1.21
1312	0.97
979 + 1038	2.05×10 ⁻²
983.5 + 1312	1.67×10 ⁻²
1038 + 1312	1.60×10 ⁻²

• Already measured, no problems

500

0

1000

1500

2000

2014/12/23 Ge Energy(keV)

3000

2500

Neutrino Frontier

Summary and Plan

- Ονββ decay is also the key process to explore unknown neutrino properties.
- We are promoting CANDLES project, which is Ovββ search program by sing ⁴⁸Ca isotope.
- To estimate the BG in the Q-value, it is important to measure 2vßß decay rate to estimate BG from high energy tail of the 2vßß spectrum.
- As for ${}^{48}Ca$ as $\beta\beta$ isotope,
 - Highest Q-value ; chance to realize BG free measurement
 - Low natural abundance ; thought as disadvantage, but chance to improve the sensitivity much.
 - Not completely forbidden β -decay to ⁴⁸Sc.
- Q-value of ⁴⁸Sc is high enough 4.0 MeV, it will affect the estimation of 2vββ decay rate of ⁴⁸Ca.
- We proposed/develop new measuring technique of β -decay rate of ${}^{48}Ca$.
- The concept of measurement is well confirmed.
- Currently, we are trying to increase Ca concentration of solution without deteriorating the detection efficiency. We have some ideas such as,
 - producing resin cartridge with many tiny pores, like activated charcoals, functional filters, to increase active surface of ion exchange resin.
 - using functional films which Sc ion can penetrate, but Ca cannot.
- Acknowledge the support by 新学術"Neutrino Frontier".