Recent Results from CDF Searches for New Particles Top Quark Physics

Hiroyuki Matsunaga (University of Tsukuba)

Grant in Aid for Scientific Research on Priority Areas: Mass Origin and Supersymmetry Physics University of Tsukuba March 4–5 2003

Top Quark Physics

- Tevatron has been the only place to study the top quark until LHC will start in ~ 2008
 - Discovered by CDF and D0 in 1995
- Top mass: 175 GeV/ c^2
 - Why is top so heavy ?
 - Is top involved in the breaking of EW symmetry ?
 - Is it connected to any new physics ?
- Top width: 1.4 GeV
 - the decay time is less than hadronization scale \rightarrow decays as a free quark
 - decay products tell us about top polarization

Top Production at the Tevatron

- $tar{t}$ pair production $\sigma(tar{t}) \sim 5$ pb (\sqrt{s} = 1.8 TeV) \sim 7 pb (\sqrt{s} = 1.96 TeV)
 - $q\bar{q}$ annihilation \sim 90 % (\sqrt{s} = 1.8 TeV)
 - \sim 85 % (\sqrt{s} = 1.96 TeV)
 - gluon fusion
 ~ 10 % (\sqrt{s} = 1.8 TeV)
 ~ 15 % (\sqrt{s} = 1.96 TeV)
- single top production $\sigma(t) \sim 2.4 \text{ pb} (\sqrt{s} = 1.8 \text{ TeV})$ $\sim 3 \text{ pb} (\sqrt{s} = 1.96 \text{ TeV})$
 - \checkmark virtual $W\sim$ 32 %
 - W-gluon fusion \sim 62 %

Top Quark Decay

In Standard Model, $Br(t \rightarrow W^+b) \simeq 100 \%$ $t\bar{t}$ final states are classified according to the W decay

- Dilepton channel ($l^+\nu + l^-\nu + b\bar{b}$, 5 %) no *b*-tag required
- Lepton + Jets channel ($l\nu + q\bar{q}' + b\bar{b}$, 30%)
- All hadronic $(q\bar{q}' + q''\bar{q}''' + b\bar{b}, 44\%)$

$$(W \to \tau \nu)$$

b-tagging : Soft Lepton Tag ($b \rightarrow l\nu c$), Secondary VerteX Tag

m_{top} measurements in Run 1

$\sigma(t\bar{t})$ results in Run 1

Single top search in Run 1

- Direct probe of V_{tb} of EW Wtb vertex
- Background for Higgs events $W + b + \overline{b} (W^*)$ W + b + q (Wg fusion)
- Unbinned maximum likelihood fit to H_T distribution $(H_T \equiv |\not\!\!E_T| + |E_T(l)| + \sum_{T} |E_T(alljets)|)$ $\rightarrow \sigma(W^* + Wg) < 14 \text{ pb}$

Expect single top discovery in Run 2 if SM is correct

Top Dileption Candidate in Run 2

- **9** $e^+: E_T = 73 \, \text{GeV}$
- e⁻ : E_T = 56 GeV
- **Jet 1** : E_T = 35 GeV
- **Jet 2** : E_T = 34 GeV
- MET = 43 GeV
- M(e^+e^-) = 118 GeV

$\sigma(t\bar{t})$ in Dilepton Channel in Run 2

Measurement of the cross section is a "counting experiment"

$$\sigma_{t\bar{t}} = \frac{N_{obs} - N_{bkg}}{\epsilon \cdot \int \mathcal{L}}$$

•
$$\int \mathcal{L} = 72 \text{ pb}^{-1}, N_{obs} = 5,$$

 $N_{bkg} = 0.30 \pm 0.12$
Main backgrounds: $WW, Z \rightarrow \tau \tau$

- $\sigma_{t\bar{t}} = 13.2 \pm 5.9$ (stat) ± 1.5(syst)
- agree with the extrapolation of Run 1 measurement: 11.0 ± 6.0

$\sigma(tt)$ in Lepton+Jets Channel in Run 2

- Data taken from March 23rd to January 13th including Silicon: 57.5 pb^{-1}
- *b*-tagging with SecVtx
- \square In > 3 jet bin, $N_{obs} = 15, N_{bkg} = 3.8$
- $\sigma_{t\bar{t}} = 5.3 \pm 1.9 (\text{stat}) \pm$ 0.8(syst)
- good agreement with the theory prediction

CDF preliminary

Indirect Higgs Mass Constraint

- With 2 fb $^{-1}$ (Run 2a)
 - $\Delta M_{top} \sim 3 \text{ GeV}/c^2$ Improved *b*-tagging Jet energy scale $(Z \rightarrow b\bar{b})$
 - ΔM_W 30 ~ 40 MeV/ c^2 Systematic errors are dominant
- Constraint for Higgs mass: $\delta M_H/M_H \sim 40 \%$

SM Higgs Search at the Tevatron

- 'Light' Higgs ($m_H < 130$ GeV/ c^2)
 - $q\bar{q}' \rightarrow WH \rightarrow l\nu b\bar{b}$ (, $q\bar{q}'b\bar{b}$)
 - $q\bar{q} \rightarrow ZH \rightarrow l^+ l^- b\bar{b}, \nu\nu b\bar{b}$ (, $q\bar{q}b\bar{b}$)
- 'Heavy' Higgs
 (130 < m_H < 180 GeV/ c^2)
 - $gg \to H \to WW \to l^+ l^- \nu \bar{\nu}$
 - $q\bar{q}' \to WH \to l^{\pm}\nu WW \to l^{\pm}\nu l^{\pm}\nu jj$
 - $\begin{array}{cc} \bullet & q\bar{q}' \to ZH \to l^{\pm}l^{\mp}WW \to \\ l^{\pm}l^{\mp}l^{\pm}\nu jj \end{array}$

Run 1 SM Higgs Searches

 $\sigma(p\bar{p} \rightarrow VH) * Br(H \rightarrow b\bar{b}) < 7.4 \text{ pb} @ 95\% \text{ CL}$

SM Higgs Search Projections for Run 2

- Run 2 improvements: Luminosity, E_{cm}, B-jet trigger, B-tagging, jet energy resolution
- Run 2a (2 fb⁻¹)
 - Exclude SM Higgs for masses up to 120 GeV/c²
- Run 2b (\sim 15 fb $^{-1}$)
 - Exclude mass range up to \sim 180 GeV/ c^2
 - 5 σ discovery if $m_H <$ 120 GeV/ c^2

Higgs Boson in MSSM

- 2 Higgs doublets
- 5 scalar particles
 2 neutral CP-even: h, H
 1 neutral CP-odd: A
 2 charged: H[±]
- **2** parameters: $tan\beta$ and M_A
- Mass constraints: $M_h < 135$ GeV, $M_{H^+} > M_W$
- Signatures may be enhanced at large $tan\beta$: ϕ bb \rightarrow bbbb (ϕ = h, H, or A)
- ▶ New signature: $t \rightarrow bH^+$, $H^+ \rightarrow \tau \nu$
- τ can be triggered in Run 2 H⁺ $\rightarrow \tau \nu$, $\phi \rightarrow \tau \tau$

MSSM Higgs Searches

2 fb⁻¹

5 fb⁻¹

10 fb⁻¹

30 fb⁻¹

Searches for Squarks and Gluinos

Run 1 search

- \geq 3 jets + E_T events (E_T originates from LSPs)
 - $M_{\tilde{g}} > 190~{
 m GeV/}c^2$

•
$$M_{ ilde{q}} >$$
 300 GeV/ c^2 if $M_{ ilde{g}} \simeq M_{ ilde{q}}$

95 % CL curve (tan β = 3)

Run 2 projection (15 fb^{-1})

Searches for RPC stop in Run 1

- Stop pair produced $(q\bar{q},gg \rightarrow \tilde{t}\bar{\tilde{t}})$
- Assuming heavy charged sleptons

 $\sum_{l=e,\mu,\tau} \operatorname{Br}(\tilde{t} \to bl^+ \tilde{\nu}_l) = 1$

- observed: 0
 background:
 1.52 ± 0.26(stat) ± 0.32
 (syst)

Drell-Yan Production

Drell-Yan events can be used to search for:

- New gauge bosons (Z')
- Large extra Dimensions
- quark-lepton compositness, etc
- \rightarrow Expect cross section enhancement

Z' Search

- Dielectron channel: $M_{Z'} > 460 \text{ GeV}/c^2 (10 \text{ pb}^{-1})$
- Dimuon channel: $M_{Z'} > 275 \text{ GeV}/c^2 (16 \text{ pb}^{-1})$
- Run 1 limit: $M_{Z'} > 690 \text{ GeV}/c^2$ from $ee + \mu\mu$ channels
- Run 2a reach: \sim 1000 GeV/ c^2

Large Extra Dimensions

Randall-Sundrum graviton

- Excited graviton in 5 dimensions
- parameters: M_G , k/M_{pl} (k/M_{pl} : dimensionless coupling)
- Lower limit on RS graviton mass for 10 pb⁻¹: 340 GeV/c² (k/M_{pl} = 0.1) from *ee* channel

Summary

- Reestablished some of the basic signals
- Measured $t\bar{t}$ cross sections in Run 2
- Searches for new particles in Run 2 have already started
- More results will be released soon