Recent results on B meson rare decays from Belle

M. Iwasaki University of Tokyo For the Belle Collaboration

特定領域「質量起源と超対称性物理の研究」

Introduction(I)

FCNC processes In SM forbidden at tree level .. One loop or box → Sensitive to the New physics Rare-decay ... require very high statistics and superb background

B-Factory experiments The best experiment to measure FCNC High luminosity (Belle: <u>>350 fb⁻¹!!</u>) e⁺e⁻ collider → Clean environment

Introduction (II)

•Observables

→ Branching fraction, A_{cp} Kinematical distributions q², A_{FB}, ...

In this talk, we cover $b \rightarrow sll$, $b \rightarrow d\gamma$ and $b \rightarrow s\gamma$

1) Semi-inclusive $B \rightarrow Xsl^+l^-$ (Br, q^2 and M_{xs} spectrum) 2) Exclusive $B \rightarrow K^{(*)}l^+l^-$ (Br, q^2 spectrum, e/μ , A_{FB})

(Br)

3) Search for $b \rightarrow d\gamma$

4) Exclusive $b \rightarrow s\gamma$ modes

5) Inclusive B \rightarrow Xs γ

(Br) (Br, E_{γ} spectrum)

$b \rightarrow sll and b \rightarrow d\gamma$

$b \rightarrow sl^+l^-$, $d\gamma$ decays proceed via FCNC like $b \rightarrow s\gamma$ Br ratio ... 1/100 of the $b \rightarrow s\gamma$ very rare decays

b→sll measurements

Br is low $(b \rightarrow s\gamma; 10^{-4} \ b \rightarrow sll; 10^{-6})$ Exists the contribution from Z^{0^*} Br, $q^2 (=m_{||}^2)$ distribution, $A_{FB}(q^2)$... Sensitive to the New Physics

Two analysis approaches: •Semi-inclusive B→Xsll •Exclusive B→K^(*)||

Ali et al. PRD61 (2000) 074024

Semi-inclusive $B \rightarrow XsI^+I^-$

(Semi-)inclusive $B \rightarrow Xsl^+l^-$ as a sum of exclusive modes

Inclusive analysis

 \rightarrow theoretical uncertainty is smaller than exclusive analysis

Reconstructed Xs system

...1 (K⁺ or K_s⁰) + 0-4π (at most 1π⁰)

Backgrounds

Dominant sources ... 1) continuum 2) BB→l⁺vX + l⁻vX

Ali et al. SM prediction (M_{II}>0.2GeV)

Br(B→XsII) = (4.2 ± 0.7) × 10⁻⁶

 $X_s = K + (0...4) \pi$, $X_s e \mu$ to model background, extra small peaking background

B→Xsll results

140fb⁻¹

68 net signal, significance 5.4 σ , Ave. of e⁺e⁻, $\mu^+\mu^-$

 $Br(B \rightarrow Xsll) = [4.11 \pm 0.83^{+0.85}_{-0.81}] \times 10^{-6}$ for $M_{\ell^+\ell^-} > 0.2 \text{ GeV}$ [cf. BaBar: $(5.6 \pm 1.5 \pm 0.6 \pm 1.1) \times 10^{-6}$, SM (Ali et al.): $(4.2 \pm 0.7) \times 10^{-6}$]

The result is in agreement with SM

B→Xsll results

Both Belle and BaBar results are consistent with SM

Exclusive $B \rightarrow K^{(*)}|^+|^-$

$B \rightarrow K^* |_{l^-}:electron/muon ratio$

$B \rightarrow K^* I^+I^-$:FB Asymmetry

 $A_{FB}(K^*ll)$: very sensitive to new physics that may not be seen in $\mathcal{B}(b \rightarrow s\gamma)$

253 fb⁻¹

Exclusive $B \rightarrow \rho^{0}/\rho^{+}/\omega\gamma$ measurements($\rho^{0} \rightarrow \pi^{+}\pi^{-}, \rho^{+} \rightarrow \pi^{0}\pi^{+}, \omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$) Simultaneous fit to 3 signal + 2 K* γ assuming isospin: $Br(B \rightarrow (\rho, \omega)\gamma) \equiv Br(B^{+} \rightarrow \rho^{+}\gamma)$ $= 2(\tau(B^{+})/\tau(B^{0}))Br(B^{0} \rightarrow \rho^{0}\gamma)$ $= 2(\tau(B^{+})/\tau(B^{0}))Br(B^{0} \rightarrow \omega\gamma)$

Exclusive $B \rightarrow \rho/\omega\gamma$: BG suppression

BG source of $B \rightarrow \rho^0 / \rho^+ / \omega \gamma$ ($\rho^0 \rightarrow \pi^+ \pi^-, \rho^+ \rightarrow \pi^0 \pi^+, \omega \rightarrow \pi^+ \pi^- \pi^0$)

... $B \rightarrow K^* \gamma$ feed down, $B \rightarrow \rho/\omega \pi^0$, continuum

continuum rejection : by Fisher, vertexing, flavor-tag

Exclusive $B \rightarrow \rho/\omega\gamma$: results

Projection of the Simultaneous fit in M_{bc} and ΔE Simultaneous fit : $\Gamma(B \rightarrow (\rho, \omega)\gamma) = \Gamma(B^+ \rightarrow \rho^+ \gamma) = 2\Gamma(B^0 \rightarrow \rho^0 \gamma) = 2\Gamma(B^0 \rightarrow \omega \gamma)$

Significance = 1.9 σ (from simultaneous fit) $\mathcal{B}(B \rightarrow (\rho, \omega)\gamma) < 1.4 \ge 10^{-6} @90\% CL$ $\mathcal{B}(B \rightarrow (\rho, \omega)\gamma) / B(B \rightarrow K^*\gamma) < 0.035 \dots |V_{td}/V_{ts}| < 0.21 @90\% CL$

$b \rightarrow s\gamma$ measurements

1) Exclusive $b \rightarrow s\gamma$ measurements

- ♦ B→K*γ
- **♦ B→K***₂(1430)γ
- B \rightarrow K* $\pi\gamma$ and K $\rho\gamma$
- ♦ B→Kφγ
- ♦Β→Κηγ

 $\bullet B \rightarrow \Lambda p\gamma$

♦ B→Kππγ and K₁(1270)γ

New measurements

2) Inclusive $b \rightarrow s\gamma$ analysis

Measure the $E\gamma$ spectrum from 1.8GeV

 $\frac{Br(B^+ \to K^+ \eta \gamma)}{Br(B^0 \to K^0 \eta \gamma)} = [8.4 \pm 1.5^{+1.2}_{-0.9}] \times 10^{-6} \quad (6.8\sigma \ 1^{\text{st}} \text{ observation})$ $= [8.7^{+3.1+1.9}_{-2.7-1.6}] \times 10^{-6} \quad (3.4\sigma \ 1^{\text{st}} \text{ evidence})$

$$A_{cp} = -0.16 \pm 0.09 \pm 0.06$$

Β→Κππγ

 $K_1(1270)$ and $K_1(1400)$

Both K_1 dominantly decay into $K\pi\pi$ (and other high K resonances, too)

 $\mathcal{B}(B^+ \to K^+ \pi^- \pi^+ \gamma) = (2.50 \pm 0.18 \pm 0.22) \times 10^{-5} (20.4\sigma)$ $\mathcal{B}(B^0 \to K^0 \pi^- \pi^+ \gamma) = (2.43 \pm 0.36 \pm 0.34) \times 10^{-5} (10.9\sigma)$

 $B \rightarrow K_1 \gamma$

Enhance $K_1(1270)$ by selecting $K\rho\gamma - (0.6 < M(\pi\pi) < 0.8 \text{ GeV})$

Enhance K₁(1400) by selecting K^{*}πγ — (0.8 < M(Kπ) < 1.0 GeV) K^{*}₂(1430)→Kππ BG is fixed

Β→Λργ

B → 3-body baryonic decays are now popular: $B \rightarrow p\overline{p}K, p\overline{p}\pi, \Lambda\overline{p}\pi, \Lambda\overline{\Lambda}K, \dots$

 $\begin{aligned} \mathcal{B}(B^- \to \Lambda \overline{p}\gamma) &= (2.16^{+0.58}_{-0.53} \pm 0.20) \times 10^{-6} \text{ (8.6}\sigma) \\ \mathcal{B}(B^- \to \Sigma^0 \overline{p}\gamma) &< 0.8 \times 10^{-6} \text{ 90\% CL } (M(p\Lambda) < 2.4 \text{ GeV}) \end{aligned}$

Inclusive $B \rightarrow X s \gamma$

Analysis of $B \rightarrow X_{s\gamma}$

 Fully inclusive reconstruction: see only the γ spectrum Measure Eγ spectrum (single high-energy photon)
 Huge BG ... Subtract BG Eγ spectrum

♦ Eγ > <u>1.8 GeV</u> (CLEO... 2.0GeV BaBar ... 2.1GeV)
 → reduce theoretical model error

Inclusive $B \rightarrow X s \gamma$

Belle 140fb⁻¹

52000 25000 MeV 20000 Entries per 33 MeV 01 9 01 9 01 🔲 B to gamma From pi0 From eta /is-Ided AddBg 15000 Other source 10^{4} rom continuum 10000 10³ Subtract BG 5000 ϵ correction 10^{2} 0 10 -5000 1 1.5 1.6 1.8 2 2.2 2.4 2.6 2.8 2 2.5 3 3.5 3 E^* [GeV] CM energy [GeV]

$$Br(b \to s\gamma) = (3.59 \pm 0.32^{+0.30^{+0.11}}_{-0.31^{-0.07}}) \times 10^{-4}$$
$$\langle E\gamma \rangle = 2.289 \pm 0.026 \pm 0.034 (GeV)$$
$$\langle E\gamma^2 \rangle - \langle E\gamma \rangle^2 = 0.0311 \pm 0.073 \pm 0.063 (GeV^2) \qquad 1.8 < E\gamma < 2.8 GeV$$

Inclusive $B \rightarrow X s \gamma$ results

Summary

With the world highest luminosity provided by KEKB, Belle is continually updating the results.

- Can access very rare decays of $b \rightarrow sll$ and $b \rightarrow d\gamma$
- $b \rightarrow K^*II$: First measurement of A_{FB}
- Can measure the $b \rightarrow s_{\gamma}$ process very precisely
- Exclusive $b \rightarrow s_{\gamma}$: many new measurements