

<u>佐藤構二</u>,戸村友宣,丸山和純,金信弘 (筑波大学数理物質研究科) Luc Demortier (Rockefeller University) 他 CDF Collaboration

日本物理学会·秋季大会(2005年) 大阪市立大学, 2005年9月14日

Tevatron Run II

- $p \overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV (1.8 TeV in Run I).
- Peak luminosity record : 1.4x10³² cm^{-2.}s⁻¹.
- Tevatron has already delivered ~1.2 fb⁻¹ of collisions in Run II.
- CDF has acquired ~1 fb⁻¹ of data.
- Analysis in this presentation uses 318 pb⁻¹ of data.
- Direct study on top quark is only possible at Tevatron!

Collider Detector at Fermilab

Multi-purpose detector

- Tracking in magnetic field.
 - > Tracking coverage $|\eta| < 1$.
 - Magnetic field = 1.4 T.
- Precision tracking with silicon.
 - > 7 layers of silicon detectors.
- EM and Hadron Calorimeters.
 - > $\sigma_{\rm E}/{\rm E} \sim 14\%/\sqrt{\rm E}$ (EM).
 - ⊳ σ_E/E ~ 84%/√E (HAD).
- Muon chambers.

Top Quark Mass - Introduction

- Top is one of the least well studied elementary particles (evidence by CDF in 1994 / discovery by CDF/D0 in 1995).
- Top mass is a fundamental parameter of the Standard Model.
 ^{80.6}
- Mass measurements of top and

• Tevatron Run I average : $m_{top} = 178.0 \pm 2.7 \pm 3.0 \text{ GeV}/c^2$ $\rightarrow m_{higgs} < 260 \text{ GeV}/c^2 (95\%)$

• CDF Run II goal : $\Delta m_{top} \sim 2 \text{ GeV}/c^2 (\int L dt = 4 - 8 \text{ fb}^{-1})$

m_{top} ~ EWSB scale.
 →Special role of top?

Final states : We measure top mass in I+jets channel.

Mode	Br.(%)	
dilepton	5%	Clean but few signal. Two v's in final state.
lepton+jets	30%	One v in final state. Manageable bkgd.
all hadronic	44%	Large background.
τ + Χ	21%	τ -ID is challenging.

Flow of Mass Measurement

B-Tagging Algorithms

• SECVTX

- Reconstructs secondary vertex of B-hadron decay.
- Tags b-jets by displacement of secondry vertex from primary vertex.
- Jet Probability (JP)
 - Looks at the impact parameters of tracks in the jet and calculates probability of the jet to originate from the primary vertex.
 - Tags b-jet according to the calculated probability.
 - We have optimized JP algorithm for the best sensitivity to top mass.

	٤ _b	^E light flavor
SECVTX	28%	0.34%
JP	33%	4.1%

JP has looser tagging condition with larger b-tagging efficiency.

Subsample Categorization

4 jets in final state \rightarrow 12 parton-to-jet assignments. B-tagging information helps in correct g

reconstruction of signal events!

 \rightarrow Uncertainty minimum in double tagged candidates.

Use of JP doubles the double tagging efficiency!

Category	2-tag (S+S)	2-tag (S+J)	1-tag(T)	1-tag(L)	0-tag
j1-j3	Ε _T >15	E _T >15	E _T >15	E _T >15	E _T >21
j4	Ε _T >8	E _T >8	E _T >15	15>E _T >8	E _⊤ >21
b-tag condition	2 SECVTX	1 SECVTX + 1 JP	1 SECVTX	1 SECVTX	0 SECVTX
# parton-jet Assignment	2	2	6	6	12
S/N (318 pb⁻¹)	17/1	15/1	36/7	11/10	~20/20

2-tag samples are much purer and easier to reconstruct!

Extracting Top Mass for each Candidate Event

Minimize χ^2 to reconstruct event-by-event top mass (2-C fit).

Fluctuate particle momenta according to detector resolution.

• 2jets from W decay + 2*b*-jets. \rightarrow 12 jet-parton assignments.

Solution Assignment inconsistent with b-tagging information is rejected. We choose the assignment with smallest χ^2 as seemingly correct event reconstruction.

• We reject events with χ^2 >9, as seemingly background.

Top Mass Templates

M_{top} distribution shape is parameterized as a function of true top mass using ttbar Monte Carlo samples with different top mass assumptions.

Signal Template (1tagT)

Background distribution is also fit into a function, but NOT dependent of top mass.

Result of Fit to Data

Likelihood fit looks for top mass that describes the data M_{top} distribution best (template fit).

The background fraction is constrained by estimation for tagged samples.
The background fraction is free in 0 tag sample.

Improved Fitting

World's Best Single Measurement. Even better than Run I World Ave!

 m_{top} = 173.5 +2.7/-2.6 (stat) ± 3.0 (syst) GeV/c²

JES syst = ± 2.5 compared to ± 3.0 wo/ in situ calibration

 $L = 318 \text{ pb}^{-1}$

Future Projection

- Total uncertainty of 2-D fit measurement will achieve <u>∆m_{top} ~ 2 GeV/c²</u> in the end of CDF Run II.
- Conservative projection
 assuming only stat. and JES
 will improve.
 - We can improve other syst. uncertainties.
 - We will optimize btagging condition for 2-D fit in the next round. Currently it only uses SECVTX.
- \rightarrow We will do better!

Summary of Run <u>II Measurements</u>

CDF Run II Top Mass Measurements

Preliminary World Average with CDF/D0, Run I/Run II Measurements

Only best analysis from each decay mode, each experiment.

Summary

CDF L+Jets Template w/ JP :

m_{top}=173.0 +4.4/-4.3 GeV/c² (318 pb⁻¹).

• Template fit with in-situ JES calibration is the best single measurement and better than Run I World Average :

m_{top}=173.5 +4.1/-4.0 GeV/c² (318 pb⁻¹).

This analysis will achieve $\Delta m_{top} \sim 2 \text{ GeV}/c^2$ in the end of Run II.

• **Preliminary combination** of CDF and D0 (Runl + Run II):

 m_{top} =172.7 ± 2.9 GeV/ c^2 .

(Run I World Average : $178.0 \pm 4.3 \text{ GeV}/c^2$)

 $\rightarrow m_{higgs}$ =91 +45/-32 GeV/c², m_{higgs} <186 GeV/c² (95% CL).

(m_{higgs}<260 GeV/c² using Run I World Average)

- Next Winter with ~1fb⁻¹ dataset (×3 statistics).
 - Improvement of dominant uncertainties by $\sim 1/\sqrt{L}$.

- D0 Run II Dilepton and All Hadronic channel from CDF/D0 Run II will be newly included in combined measurement.

- We expect a good improvement in precision of measurement again!

Backup

Results of Template Measurements

	Template	Template	Template
		+ JP	+ JES
Summer 2004	176.7 ^{+6.0} -5.4±7.1	177.2 ^{+4.9} -4.7±6.6	
Summer 2005	173.2 ^{+2.9} -2.8±3.4	173.0 ^{+2.9} -2.8±3.3	173.5 ^{+2.7} -2.6±3.0

CDF L+jets Template Group

Intstitutes : Tronto 3 UC Berkeley 2 Chicago 4 JINR 2 Fermilab 1 Pisa 1 Tsukuba 4 Rockefeller 1

- Template Method measurement was reported by
 - Fermilab Today <u>"CDF Tops the Top World Average</u>" (April 21, 2005)
 - KEK News <u>"質量起源の解明をめざして"</u> (May 19, 2005)

Event Selection

- One isolated high P_T lepton (e/ μ).
 - e : $E_T > 20$ GeV, $|\eta| < 1.1$, shower shape, matching between calorimeter cluster and track.
 - □ μ : P_T > 20 GeV, $|\eta|$ <1.0, matching between muon chamber hits and track, energy deposit in calorimeter.
- Missing $E_T > 20$ GeV, to ensure there was a v in the final state.
- 4 Jets reconstructed using JETCLU algorithm with cone size 0.4.

Sample subdivision by b-tagging conditions.

- 1 and 2 tag channels :
 - More than 3 jets with $E_T > 15$ GeV, $|\eta| < 2.0$.
 - The 4th jet with $E_T > 8 \text{ GeV}$, $|\eta| < 2.0$.
- 0 tag channel :
 - 4 jets with E_T >21 GeV, $|\eta|$ <2.0.
- We only consider the leading 4 jets as products of ttbar decay, when ≥ 5 jets are found in a event.
- Two b-tagging algorithms SECVTX and Jet Probability.

Jet Probability Algorithm (1)

Assign sign (\pm) to the impact parameter D0 of each track based on its direction.

Jet Probability Algorithm (2)

Combine D0 significance of all the tracks in the jet and calculate "the probability of the jet originating in the primary vertex" (Jet Probability).

(Jet Probability in $t\bar{t}$ MC Events)

We can cut at arbitrary Jet Probability value for the *b*-tagging. This enables us to loosen the *b*-tagging condition easily.

Uncertainty on Jet Energy Measurement

Jet Energy Uncertainty Compared with Run I

Optimization of Jet Probability

- Jet Probability algorithm calculates probability of the jet to originate from the primary vertex.
- We apply a cut on the calculated probability for b-tagging.
- We optimized the cut value for the best statistical sensitivity to top quark mass in a Monte Carlo study.

Expected Number of Events

Comparison of number of events between data and expectation :

CDF Run II Preliminary (318 pb^{-1})

		2 tag(S+J)	2 tag(S+S)	1 tag(T)	1 tag(L)	0tag
m	Background	1.18 ± 0.59	0.71 ± 0.18	7.11 ± 1.24	9.55 ± 1.71	
^{to} o 7	$t\bar{t}$ (6.1 pb)	8.6	14.0	25.7	11.1	19.4
15 G.	$t\bar{t}$ (8.0 pb)	11.3	18.4	33.7	14.6	25.4
D C2	Total (6.1 pb)	9.8	14.7	32.8	20.6	
top = 1	Total (8.0 pb)	12.5	19.1	40.8	24.1	—
178 Gay	Observed	18	16	43	21	40
V/C2						

Fraction of Correctly Reconstructed Events

Fraction of Correctly Reconstructed Events

In ttbar MC events with m_{top} =178 GeV/c². Categorization with SECVTX only.

Definition of Likelihood

$$L = L_{shape} \times L_{bkg}$$

$$L_{shape} = \frac{e^{-(N_s + N_b)}(N_s + N_b)^N}{N!} \prod_{i=1}^{Nevents} \frac{N_s P_{sig}(M_{recon}^i, m_t) + N_b f_b(M_{recon}^i)}{N_s + N_b}$$

$$L_{bkg} = exp\left(-\frac{1}{2}\left[\frac{N_b - N_b^{pred.}}{\sigma_{N_b^{pred.}}^2}\right]^2\right)$$

- Mⁱ_t the reconstructed top mass for each event in the sample to be fitted.
- m_t true top mass for each event in data sample.
- N number of candidate events in the sample.
- N_s number of signal events.
- N_b number of background events.

 m_t , N_s and N_b are the free parameters in the fit.

No background constraint on 0tag sample.

combined likelihood - Each channel is statistically independent.

$$L_{comb} = L_{0tag} \times L_{1tagL} \times L_{1tagT} \times L_{2tag(S+S)} \times L_{2tag(S+J)}$$

Result of Fit to Data

Likelihood fit looks for top mass that describes the data M_{top} distribution best (template fit).

- . The background fraction is constrained by estimation for tagged samples.
- . The background fraction is free in 0 tag sample.

Measured Top Mass

 m_{top} = 173.0 +2.9/-2.8 (stat) ± 3.3 (syst) GeV/c²

Cross Check

• The obtained statistical uncertainty is consistent with expectation from Monte Carlo study.

Improved Fitting Method

- Syst. Uncertainty = ±3.3 GeV/c² is dominated by JES uncertainty (±3.0 GeV/c²).
- Most JES uncertainties are shared between light flavor and b-jets. Only 0.6 GeV/c2 additional uncertainty on m_{top} due to b-jet specific systematics.

→Likelihood fit with constraint on the dijet mass in candidate events.

Templates with JES

(M_{top}, hadronic W invariant mass) are parametrized as functions of (true top mass, JES).

- m_{jj} varies significantly as a function of JES.
- Event-by-event M_{top} is also largely dependent on JES.
 - \rightarrow M_{top} distribution is now parameterized as a function of true top mass m_{top} and JES.

Future Projection

- Total uncertainty of 2-D fit measurement will be
 ∠m_{top} ~ 2 GeV/c²
 in the end of CDF Run II.
- Conservative projection assuming only stat. and JES will improve.
 - We can improve other syst. uncertainties.
 - We will optimize b-tagging condition for 2-D fit. Currently it only uses SECVTX.

 \rightarrow We will do better!

Summary of Run II Measurements

Run II Combined Top Mass

Only best analysis from each decay mode, each experiment.

Correlation :

- uncorrelated
 - ⊳ stat.
 - > fit method
 - ▹ in situ JES
- •100% w/i exp (same period) > JES due to calorimeter
- •100% w/i channel
 - bkgd. model
- •100% w/i all
 - > JES due to fragmentation,
 - » signal model
 - » MC generator

New Preliminary World Average

Combination of the best analysis from each decay mode, each experiment. Correlation :

			Run-I published			Run-II preliminary					
Split into 2 to				CDF		D	Ø		CDF		DØ
isolate "in situ"			all-j	l+j	di-l	l+j	di-l	(l+j) _i	$(l+j)_e$	di-l	l+j
JES systematics	CDF-I	all-j	1.00								
from other JES	CDF-I	l+j	0.32	1.00							
	CDF-I	di-l	0.19	0.29	1.00						
	DØ-I	l+j	0.14	0.26	0.15	1.00					
	DØ-I	di-l	0.07	0.11	0.08	0.16	1.00				
	CDF-II	$(l+j)_i$	0.04	0.12	0.06	0.10	0.03	1.00			
	CDF-II	$(l+j)_e$	0.35	0.54	0.29	0.29	0.11	0.45	1.00		
	CDF-II	di-l	0.19	0.28	0.18	0.17	0.10	0.06	0.30	1.00	
	DØ-II	l+j	0.02	0.07	0.03	0.07	0.02	0.07	0.08	0.03	1.00

m_{top}=172.7 ±1.7 (stat) ±2.4 (syst) GeV/*c*²

Future Improvements

Combined Result:

	GeV/c ²	
Result	172.7	
Stat.	1.7 🗡	V
JES	2.0	
Sig. Model	0.9	
Bkgd. Model	0.9	
Multi-Interaction	0.3	
Fit Method	0.3	
MC Generator	0.2	
Total Syst.	2.4	
Total Error	2.9	

- Syst. already dominates the uncertainty!
- Basic improvement by $\sim 1/\sqrt{L}$
- *L*~1fb⁻¹ in next Winter.
 - In-situ JES calibration is a powerful tool. It can be introduced to other L+jets analyses.
- Sig./Bkgd. Modeling (ISR/FSR/Q²
 dependence etc.) can be improved by using our own data.
- D0 Run II Dilepton measurement is coming soon.
- Measurements in All Hadronic mode (CDF/D0) are under development.

Trigger :

 2 SVT track + 2 10GeV clusters.

Offline Cuts :

- N==2 jets w/ E_T>20GeV, |η|<1.5 (JetClu cone 0.7).
- Both jets are required to have secondary vertex tag.
- Δφ(j1,j2)>3.0.
- $E_T^{3rd-jet} < 10 GeV.$

