28th International Workshop on Vertex Detectors, 13-18 Oct, 2019 @Lopud Island, Croatia

Design of a Segmented LGAD Sensor for Development of 4-D Tracking Detector

University of Tsukuba WADA Sayaka, ONARU Kyoji, HARA Kazuhiko, **KEK-INPS** UNNO Yoshinobu, NAKAMURA Koji

4D Tracker

Tracks reconstructed by ATLAS (event with 17 interactions) ➡ Expect 200/crossing at HL-LHC

- Identify vertices otherwise difficult using position information only
- Effective in forward regions where vertexing precision is limited

 $(\Delta t=10ps \rightleftharpoons \Delta z=3mm)$

collision points Position

Time

Low-Gain Avalanche Detector (LGAD)

Add p⁺ layer underneath the n⁺ readout electrode High E-field induces avalanche multiplication

- ▶ thin (50µm) substrate is effective for signal creation
- short charge collection time with fast signal shape
 - \rightarrow good time resolution O(10ps)

Strip type

strip pitch : 80µm

90

HPK LGAD samples

- Should we add time information to each hit,
- Reconstruct tracks using proper time differences
- Help reduce wrong hit combinations and effective in reducing the track reconstruction CPU
 - \rightarrow Innovation in tracking

Pad type

window : 1mmD

Active thickness : 50 or 80µm (150µm physical) p⁺ layer concentration : 4 steps (A<B<C<D)

Feb 20-Mar 4, 2018 @FNAL FTBF

Signal readout

LGAD signal is amplified (using high-speed amps) and digitized using DRS4 flash ADCs (5GS/s)

Pulse height : 12bit, 1Vpp $(1V/4096 \sim 0.25mV)$ ▶ Time bins : 10bit, 5GS/s (200ps*1024~200ns F.S.)

 $V_{thresh} = f \times V_{peak}$

TCAD Simulation for Segmented LGADs

TCAD Sentaurus[™] (synopsys)

Summary

We are developing LGAD sensors to realise 4-D tracking detector

- Time precision better than 30 ps is obtained from test beam measurements
- ➡ TCAD simulation tuned to reproduce measured characteristics is used to design segmented LGAD sensors. Trench is a good candidate. Continue to optimize the electrode structure and trench process

