Characteristics of Prototype Silicon Sensors for CDF Run2B

K. Hara, U of Tsukuba summarizing tests done at Tsukuba/Purdue/UNM

- Prototype Design and Delivery
- Sensor Characteristics (pre-radiation) IV, CV, AC scan, DC scan... comparison with HPK probing limitations ...
- Sensor Characteristics (post-radiation)
- Charge Up Issue
- Summary

Prototype - Design

Dimensions axial:40.6 x 96.4 mm² 1.2°: 41.1 x 96.4 mm²

- p+n single sided on 6" (two sensors per wafer)
- 256 AC coupled readout strips (75um/80um pitch)
 - p⁺ width = 8 um; Al width by 14 um
- single intermediate strip
- poly-Si bias resistors of $1.5M\Omega$
- single guard ring

Prototype - Delivery

Prototypes fabricated by Hamamatsu Photonics

- 60 Axial Prototypes (delivered in July 2002)
- 53 Stereo Prototypes (delivered in Oct 2002)

~1/3 of stereo: unusual stains no apparent effects on sensor performance

Sensor Characterization

used for strip integrity

comparison (HPKvsTsukuba)

- I-V up to 1000V: All
- C-V: 23+53 (23 axial+53 stereo)
- Stability of I-V: 7+9
- Long-term stability: 6+4 biased at 500V
- AC scan: Coupl. Cap (Ccp), ~Rbias (R), oxide leak(Icp) :(18+4)+18
- DC scan: I_strip: 0+2, only for leaky sensors
- Interstrip resistance: 3+0
- Interstrip capacitance: (9+4)+2
 Diagnostic tests when irregularities are found
- n irradiation: 3 sensors @ 1.4x10¹⁴ n/cm²

2 sensors @ 0.7x10¹⁴ n/cm²

C-V curves

Full Depletion Voltage

HPK: lowest Vbias when $\Delta(1/C^2) < 0.02 (1/C^2)$ @ Vstep=10V

Correlation of Full Depletion Voltages between HPK and Tsukuba

Fig. 3b Correlation of full depletion voltages defined by HPK and Tsukuba.

Fig. 3c Full depletion voltage distributions for axial and stereo sensors (Tsukuba) and for all (HPK).

good correlation, though HPK gives ~20V larger our spec: 120V < Vdep < 250V

005 I-V stability

IV stability (axial)

good ones ...

001 I-V stability

002 I-V stability

IV stability (bad axial)

A032 showed instability at later stages (~7hrs) breakdown at HV ramping (at 800V after 10hrs) Out of 16 sensors, we found one bad sensor...

What went wrong with 032? **IR** camera view: clear trace of discharge

junction breakdown: no recovery

We must respect the spec (500V)!?

12

scratch degrades I-V stability?

some of I-V curves are certainly worse for stereo...

SVX2b Stereo Prototype 072 1.00 19:12 19:46 20:20 20:55 × 21:30 22.04 +-2239 -23:13 Leak Current (μ A) 23:48 022 0.57 131 2.06 0.10 -2:40 * -3:49 -424 - 4 58 **▲** 6 42 × 7:17 * 751 + 9100 0.01 200 400 600 800 0 1000 BiasVoltage (V)

class Bs

class A

DC scan ... only for leaky sensors

Stereo Prototype 010 (Vb=400V)

current is fully explained by this single strip

AC scan

Figure 3: Setup for the full strip scan (AC scan)

AC scan results (bad examples)

RD256 RD249 RD248 RD244

RU2 implant open open is identified with microscope

Interstrip Resistance

Distribution looks different, but all are $>50G\Omega$

In addition to these scans, Rint is measured to identify strips with irregular result...

1000

100

10

1

1

101

201

301

strip

Resistance (G Ω)

All looked similar except #007 Cint(R5-R6) is high ... R5 & R6 showed smaller R

Fig. 7b Interstrip capacitance: Sensor 006 (Stereo) with an irregular value

Intermediate Implant Opens

Examples of Implant Opens

20

sensor	НРК	Tsukuba	
1			Dead Channels:axial
2			
5		RU62 (Ccp=93pF, R=1.77MO,Implant open)	summary
7		RD252 (R=1.1MO)	
		RD251 (R=1.1MO) trace of small discharge	small discharge
10	IU244 (Implant open)	IU244 (R=large)	sinan discharge
	IU241 (Implant open)	IU241 (R=large)	
	IU126 (Implant open)	IU126 (Implant open)	
11	IU183 (Implant open)	IU183 (Implant open)	
12		RU240 (Ccp=1.07nF, R=2.94MO, Icp=8.1uA)	new & obvious
16			
20		RD231 (167pF, 1.45MO, 6uA)	• open identified with microscope
		RD217 (887pF, 2.63MO, 8uA)	• resistance of DC pad to B.R. large
21			• Icp consistent with punch-through
23		RD242 (252pF,3.7MO,8uA),	
		RD241 (149pF,2.9MO, 8uA)	
		RD240 (4860pF, 1.7MO, 8.3uA)	
		RD200 (197pF, 3.7MO, 8uA)	Too many punchthrugh
		RD194 (155pF, 3.7MO, 8uA),	
		RD116 (1920pF, 2.6MO, 8uA)	created?
26			
53			7
54	ID237, ID240 (Leaky strip)	RD256 (129pF, 1.15MO, 8.1uA)	Informed that HPK applied only
	RD249, RD250 (Leaky strip)	RD249 (120pF, 2.0MO, 1.5uA)	100 / instead of 120 / at punch
		RD248 (3291pF, 1.6MO, 8.3uA)	100V Instead of 120V at punch
		RD244 (292pF, 3.7MO, 8.0uA)	through test!
56			
62			
64			21
	ID229, ID230, RD230 (Bad		
67	isolation)	RU136 (Cep=80pF, R=1.6MO, implant open)	

Readout implant opens

Discharge at probing!

RD252

RD251

Dead Channels:stereo summary

ID	НРК	Tsukuba		
6		No ne	w puncł	n through
7	RU225 (Leaky)	since	HPK an	plied 120V!
10		RU225 (leaky)		
		RU75 (C=55,R=1.16; implant open)		
23		RU2 (C=40,R=0.88; implant open)		-
24				-
47	IU158 (Implant open)	IU158 (Implant open)		-
65	IU59 (Implant open)	IU59 (R=20M)		
66	IU238 (Implant open)	IU238 (implant open)		
68	IU21 (Implant open)	IU21 (implant open)		-
69				-
13		RD83 (C=111, R=1.77)		-
46				
49	IU147 (Implant open)	IU147(R=large)	nov	w at FNAL
50				
53	ID7 (Implant open)	ID7 (implant open)		
		RD24 (C=90,R=1.6, implant open)		-
57	ID62 (Implant open)	ID62 (implant open)		-
63	ID146 (Implant open)	ID146 (implant open)		-
25	ID230 (Implant open)	ID230 (implant open)	23	

Long-term current stability

4 axial + 4 stereo sensors are placed in an environmental chamber (20degC) 30 AC pads/sensor are wirebonded to external V to test oxide punch-through Vb=+500V 24 Vcp=+100V

Long-term stability test: status(1)

No breakdown sensors

One axial (A23) failed oxide stability, as HPK/tested at 100V only

Long-term stability test: status(2)

Leakage Current Stability, Unirradiated Sensors

Coupling capacitor at 120V

Fig. 9 Illustration of measurement configurations of readout and intermediate implant opens. strips .measurements.

HPK probing is not sensitive to detect Readout Implant Opens
DC scans at the poly-Si side
Tsukuba found 5 Readout Implant Opens, but none by HPK*

*HPK revisited their data, but no hint of irregularity found. HPK tested the same sensor we tested, but failed to identify.

Limitation for stereo sensors

Our decision :

We accept un-probed short strips and un-detected implant opens, since the fraction of defect rate should be very small.

estimate from total number of defects, which is almost zero.

15 defects / 113 sensors 15 / 58k strips = 0.0026% 29

Post Irradiation Measurements

expected fluence at CDF: $(0.46 \pm 0.14) \times 10^{14}$ 1-MeV n/cm²/fb⁻¹@L0

 1.4×10^{14} n/cm² for 30 fb⁻¹ @L0 (r=2.1 cm)

3 sensors irradiated to 1.4 x 10¹⁴ n/cm² Purdue
2 sensors irradiated to 0.7 x 10¹⁴ n/cm² UNM/Tsukuba

at MNRC Irradiation Facility at UC Davis

measured items: I-V Curve C-V Curve Interstrip Resistance Interstrip Capacitance Bias Resistance Coupling Capacitance

to see if any surprises ...

in practice: not straightforward to characterize due to large leakage current...

I-V and Damage Constant (equiv. neutron fluence)

I-V and Damage Constant (equiv. neutron fluence)

 $\phi = (0.33 - 0.64) \times 10^{14} \text{ n/cm}^2$

- No unexpected I-V characteristics
- Damage as expected

C-V and Full Depletion Voltage

Time since irradiation (min)

"Resistance" reaches the asymptotic value above ~350V * "Resistance" is smaller after irradiation

Intrinsic R is not degraded, but we see effects from surface charge * substantially larger than V_{FD} (~130V) ³⁴

Interstrip Resistance

Strong temperature dependence due to surface charge Bias be >250V* at -10° C for R>1G Ω * substantially larger than V_{FD} (~50V)

Interstrip Capacitance (I)

Shoulders corresponding to the measured full depletion voltage Asymptotic Cint consistent with pre-irradiation values Cint decreases slowly above $\rm V_{\rm FD}$

Interstrip Capacitance (II)

LCR freq (1MHz) may be not high enough ...? Require a bias substantially larger than $V_{\rm FD}$ to reach the asymptotic values

Coupling Capacitance

Coupling Capacitors are OK!

A Consideration ...

For V< V_{FD}: Moderate isolation is achieved Cint is not very large V>> V_{FD}is required to isolate strips minimize Cint

Mechanical Precisions

Measuring Microscope : Mitutoyo MF-UA

typ 1-2 um in XY typ 3 um in Z

- Wafer thickness
- Edge cut precision
- Sensor warp

Sensor Planarity

Wafer thickness

Edge cut precision

edge cutting is precise to 5 um...

Charge-Up Issue

In early stage, we often got bad distributions (R/Ccp e.g.)

Rint, Cint are also affected symptom: isolation degrad. we suspected vacuum tweezers caused charge-up on sensor surface

This could be due to probe tips not properly discharged

After 3 months, it became hard to reproduce charge-up...

anyway... Charge-up disappear if the sensor is back in envelope

Charge Up – its mechanism

<100> is easier than <111> to charge up due to lower transition potential for inversion layer creation

Charge Up – recovery

Surface charges responsible for inversion layer creation should be taken away if there is a route

- Al strips are wire-bonded
- substantial surface current

Charge Up – recovery

(1) recovery around bonded strips
(2) no recovery in isolated area for 61h

a sample heavily charged up apply epoxy (Araldite 2011) some Al strips wire-bonded

Charge-Up Recovery (w/ UV)

- wire-bonds remove surface charge
- surface charge in isolated area could remain at least for days
- UV enhances charge removal
- avoid use of tweezers unless it is proven not to charge-up

Summary of Prototype Characteristics

Electrical characteristics are OK

- Leakage current is small (~0.1uA) and IV good to 1000V
- Dead channel fraction is small
- Defects reported by HPK are all identified
- 5 new readout implant opens are found
- 1 new un-identified defect

Mechanical precisions are OK

Post-irradiation characteristics are OK

- Reasonable full depletion voltages of irradiated samples
- Degradations in Isolation, Cint,... due to surface charge as expected requires additional bias to recover them

Charge-up: understood & manageable Important that our QA is sensitive to detect charge-up when it happeas

limitation of the HPK test system

Quality Assurance Procedure

CDF note 6283

Jan.25, 2003 v1

Silicon Sensor Quality Assurance for the CDF Run2b Silicon Detector

N. Bacchetta¹, G. Bolla⁴, D. Bortoletto⁴, A. Canepa⁴, B. Flaugher¹, K. Hara⁶, D-H. Kim⁵, S. Kim⁶, M. Hoeferkamp³, D. Pellett², A. Roy⁴, S. Seidel³, Y. Takei⁶, I. Yu⁵

¹Fermilab, Batavia, Illinois, USA
 ²University of California, Davis, California, USA
 ³University of New Mexico, Albuquerque, New Mexico, USA
 ⁴Purdue University, West Lafayette, Indiana, USA
 ⁵CDF-Korean Group (Syungpook U, Sungkyunkwan U)
 ⁶University of Tsukuba, Tsukuba, Ibaraki, Japan

Abstract

This documents describes in detail the quality assurance (QA) program for the CDF Run2b silicon sensors. The scope of the QA program, the responsibilities of the participating institutions and the measurement procedures are defined.

Production Schedule: HPK Proposal

6" line is shared with other commercial products HPK enhances those production till June 2003 HEP production is postponed/slowed down:

 $CMS \qquad GLAST \rightarrow (ATLAS \rightarrow 4")$

HPK Proposal for CDF order: 03/06 07 08 09 10 11 12 04/01 02 axial 135 135 270 270 270 210 275 135 + = 1700+stereo 0 0 125 125 0 125 125 190 + = 690+Outer axial: 1656 Outer stereo: 648 L0 axial: 144 + spare: ~20%

QA program: guideline

Clear definition of QA program is essential to achieve effective/efficient QA among several institutions involved.

HPK:	lot basis data:	R_poly, R_implant			
	for each sensor:				
	full depletion voltage (C-V)				
		visual inspection			
	for each strip:	strip integrity	DC scan)		
			Сср	Isolation (~R_poly)	
			Al open	implant open (interm.)	
			Al bridge	leaky	

Institutions:

intensive probing ~ intensive damaging ... do minimum required: I-V and visual inspection intensive probing on sensors with irregular I-V check HPK's QA with visual problems with many defect strips ⁵²

Organization

Procurement and Testing Institutes

o University of Tsukuba, Japan. Local coordinator: K. Hara

o Kyunpook National University, Korea. Local coordinator: D-H. Kim Procurement Institute

o Fermilab, Batavia, USA. Local coordinator: N. Bacchetta Testing Institutes

- o University of New Mexico: S. Seidel
- o Purdue University: D. Bortoletto
- o University of California, Davis: D. Pellett

QA program - summary

QA item	QA done by	sampling (production)	Comments	Excel book page
(1) Initial registration	Procur. Inst.	100%		Page-1
(2) Visual Inspection	Procur. Inst.	100%		Page-2
(3) I-V	Procur. Inst.	100%		Page-3
(4) IV-stability	Testing Inst.	30% (5%*)	Sensor subsets	Page-4
(5) AC-scan	Testing Inst.	30% (5% *)	Sensor subsets	Page-5
(6) C-V	Testing Inst.	30% (5% *)	Sensor subsets	Page-6
(7) Mechanical Tests	Testing Inst.	10% (5% *)	Sensor subsets	Page-7
(8) DC-scan	Testing Inst.	10% (5%*)	Diagnostic+subsets	
(9) Poly-Si resistor	Testing Inst.	10% (5% *)	Diagnostic+subsets	
(10) Interstrip Cap.	Testing Inst.	10% (5% *)	Diagnostic+subsets	
(11) Interstrip Res.	Testing Inst.	10% (5% *)	Diagnostic+subsets	
(12) n irradiation	Testing Inst.	3-4 / 2 mon		
(F) IV and Vis. Inspct	Fermilab	100%		Page-1

(2)/(3) will be merged to (F), once quality sensor production is established*or at least one sensor per batchDo (9) frequently if it is easier for detecting charge-up

Excel based Database

