Miscellaneous

$$
\begin{array}{ll}
f(x, y, z)=0 & \Longrightarrow \quad\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial y}\right)_{z}=-1 \\
k_{T} \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}: & \text { Isothermal compressibility }
\end{array}
$$

First Law of Thermodynamics

$$
\begin{aligned}
& d U=d^{\prime} W+d^{\prime} Q \\
& d^{\prime} Q=d U+P d V \quad \text { Quasi-static process }
\end{aligned}
$$

Equation of State

$$
\begin{aligned}
& U=U(T, V) \\
& C_{V} \equiv\left(\frac{d^{\prime} Q}{d T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} \quad C_{p} \equiv\left(\frac{d^{\prime} Q}{d T}\right)_{P}=C_{V}+\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right] \beta V \\
& \quad \beta \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}: \text { Coefficent of thermal expansion } \\
& d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V=C_{V} d T+\left(\frac{C_{p}-C_{V}}{\beta V}-P\right) d V
\end{aligned}
$$

Clausius inequality (Cycle where heat quantities Q_{i} are given from sources T_{i})

$$
\sum_{i} \frac{Q_{i}}{T_{i}} \leqq 0 \quad \text { (Equal sign denotes reversible process) } \quad d^{\prime} Q \leqslant T d S
$$

In quasi-static (reversible) process $d^{\prime} Q=T d S$

$$
d U=T d S-P d V=T\left(\frac{\partial S}{\partial T}\right)_{V} d T+\left[T\left(\frac{\partial S}{\partial V}\right)_{T}-P\right] d V \quad\left(\frac{\partial S}{\partial T}\right)_{V}=\frac{C_{V}}{T}
$$

Thermodynamic Functions

Thermodynamic function		Variables	Expression	Minimal change	Euler relation
Internal energy	U	S, V	U	$T d S-P d V$	$T S-P V$
Enthalpy	H	S, P	$U+P V$	$T d S+V d P$	$T S$
Helmholtz function	F	T, V	$U-T S$	$-S d T-P d V$	$-P V$
Gibbs function	G	T, P	$U-T S+P V$	$-S d T+V d P$	0

In case N is considered, $\mu d N$ is added in minimal change and μN is added in Euler relation

Grand Potential

$\Omega \equiv F-\mu N \quad d \Omega=-S d T-P d V-N d \mu$
Relational Expression between Thermodynamic Functions

$$
\begin{aligned}
T & =\left(\frac{\partial U}{\partial S}\right)_{V} \\
S & =-\left(\frac{\partial F}{\partial T}\right)_{V} \\
P & =-\left(\frac{\partial U}{\partial V}\right)_{S} \\
U & =-\left(\frac{\partial F}{\partial V}\right)_{T} \\
& =T S=F-T\left(\frac{\partial F}{\partial T}\right)_{V}
\end{aligned}=-T^{2}\left(\frac{\partial\left[\frac{F}{T}\right]}{\partial T}\right)_{V} .
$$

Maxwell's Thermodynamic Relations

$$
\begin{array}{ll}
d z=K d x+L d y & \Longrightarrow \\
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{x}=\left(\frac{\partial L}{\partial x}\right)_{y} \\
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} & \left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P} \\
& \left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}
\end{array}
$$

Enegry Equation

$$
\begin{aligned}
& d S=\frac{C_{V}}{T} d T+\left(\frac{\partial P}{\partial T}\right)_{V} d V \quad d U=C_{V} d T+\left[T\left(\frac{\partial P}{\partial T}\right)_{V}-P\right] d V \\
& \left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
\end{aligned}
$$

Open System

Chemical potential : $\mu(T, P)$

$$
\begin{aligned}
& G(T, P, N)=N \mu(T, P) \\
& d G=-S d T+V d P+\mu d N \Longrightarrow N d \mu+S d T-V d P=0 \quad \text { (Gibbs-Duhem's equation) }
\end{aligned}
$$

Maxwellian Velocity Distribution

$$
\begin{aligned}
& N(\boldsymbol{v})=N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left(-\frac{m \boldsymbol{v}^{2}}{2 k T}\right) \\
& v_{\mathrm{mp}}=\left(\frac{2 k T}{m}\right)^{1 / 2}
\end{aligned}\langle v\rangle=\left(\frac{8 k T}{\pi m}\right)^{1 / 2} \quad\left\langle v^{2}\right\rangle=\frac{3 k T}{m} . ~ l l
$$

Stirling's Formula

$$
n \gg 1 \quad \Longrightarrow \quad \begin{aligned}
& n!\quad \rightarrow \sqrt{2 \pi n} n^{n} e^{-n} \\
& \ln n!\rightarrow n \ln n-n
\end{aligned}
$$

Boltzmann's Principle

W : Number of micro-scopic-states in an isolated system
S : Entropy of the system in equilibrium state

$$
S=k \ln W
$$

Gibbs entropy

$$
S=-k \sum_{r} w_{r} \ln w_{r} \quad w_{r} \text { denotes the probability that the state } r \text { occurs }
$$

Distribution of Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein
Constraints : $\left\{\begin{array}{l}\sum_{i} N_{i}=N \\ \sum_{i} N_{i} \varepsilon_{i}=E\end{array} \Longrightarrow\left\{\begin{array}{l}\sum_{i} \delta N_{i}=0 \\ \sum_{i} \varepsilon_{i} \delta N_{i}=0\end{array} \quad \beta \equiv \frac{1}{k T} \quad \alpha \equiv-\frac{\mu}{k T}\right.\right.$
i-th cell corresponding to energy ϵ_{i} is supposed to have G_{i} states and N_{i} particles

	How to count number of micro-scopic-states W_{D}	$\begin{aligned} & \hline W_{D} \\ & \ln W_{D} \end{aligned}$	N_{i} / G_{i}
M-B	Distribute N distinguishable particles into $\left\{N_{i}\right\}$ in each i-th cell.	$\begin{aligned} & \frac{N!}{N_{1}!N_{2}!\cdots} G_{1}^{N_{1}} G_{2}^{N_{2}} \ldots \\ & N \ln N-\sum_{i} N_{i} \ln \frac{N_{i}}{G_{i}} \end{aligned}$	$e^{-\alpha-\beta \varepsilon_{i}}$
F-D	Distribute indistinguishable particles into each states w/o overlap. Choose N_{i} from G_{i} and arrange the particles by ones into them.	$\begin{aligned} & \prod_{i}\binom{G_{i}}{N_{i}}=\prod_{i} \frac{G_{i}!}{N_{i}!\left(G_{i}-N_{i}\right)!} \\ & \sum_{i}\left\{G_{i} \ln G_{i}-N_{i} \ln N_{i}\right. \\ & \left.\quad-\left(G_{i}-N_{i}\right) \ln \left(G_{i}-N_{i}\right)\right\} \end{aligned}$	$\frac{1}{e^{\alpha+\beta \varepsilon_{i}}+1}$
B-E	Distribute indistinguishable particles into each states including overlap. Arrange N_{i} particles and $G_{i}-1$ delimiters in a line divided by rearrangement factors N_{i} ! and $\left(G_{i}-1\right)$!.	$\begin{aligned} & \prod_{i} \frac{\left(N_{i}+G_{i}-1\right)!}{N_{i}!\left(G_{i}-1\right)!}=\prod_{i} \frac{\left(N_{i}+G_{i}\right)!}{N_{i}!G_{i}!} \\ & \sum_{i}\left\{-G_{i} \ln G_{i}-N_{i} \ln N_{i}\right. \\ & \left.\quad+\left(G_{i}+N_{i}\right) \ln \left(G_{i}+N_{i}\right)\right\} \end{aligned}$	$\frac{1}{e^{\alpha+\beta \varepsilon_{i}}-1}$

Microcanonical Ensemble

U : Constant

$$
\begin{aligned}
Z & =\sum_{r} e^{-\beta \varepsilon_{r}} & n_{r} & =\frac{N}{Z} e^{-\beta \varepsilon_{r}} \\
U & =-N \frac{\partial \ln Z}{\partial \beta} & P & =\frac{N}{\beta} \frac{\partial \ln Z}{\partial V} \\
S & =N k \ln Z+\frac{U}{T} & \Longrightarrow & F=-N k T \ln Z
\end{aligned}
$$

Canonical Ensemble

N, T, V : Constants

$$
w_{r}=\frac{1}{Z} e^{-E_{r} / k T} \quad Z=\sum_{r} e^{-E_{r} / k T}
$$

w_{r} : Probability of the energy of the system to be E_{r}

$$
\begin{array}{rl}
\langle S\rangle=-k \sum_{r} w_{r} \ln w_{r} & S=\frac{U-F}{T} \\
\langle U\rangle=-\frac{\partial \ln Z}{\partial \beta}=k T^{2} \frac{\partial \ln Z}{\partial T} & \langle P\rangle=\frac{1}{\beta} \frac{\partial \ln Z}{\partial V}=k T \frac{\partial \ln Z}{\partial V} \\
\langle F\rangle=-k T \ln Z &
\end{array}
$$

Sum of states of classical statistics

$$
Z=\frac{1}{N!} \frac{1}{h^{f}} \int \cdots \int e^{-\beta H} d q_{1} \cdots d q_{f} d p_{1} \cdots d p_{f}
$$

Equipartition Law

If Hamiltonian of a dynamical system is

$$
H(q, p)=\sum_{1 \leq i \leq f} a_{i} p_{i}^{2}+\sum_{1 \leq i, j \leq s} b_{i j} q_{i} q_{j} \quad s \leq f
$$

which gives

$$
U=\frac{1}{2}(f+s) N k T
$$

Grand Canonical Ensemble

T, V, μ : Constants

Sum of States

$$
\begin{array}{lr}
\Xi(T, \mu)=\sum_{N=0}^{\infty} \lambda^{N} Z(T, V, N) & \lambda=e^{\beta \mu}: \text { Absolute activity } \\
Z(T, V, N)=\sum_{r} e^{-\beta E_{r}(N)} \\
w_{r}(N)=\frac{1}{\Xi} e^{-\beta\left\{E_{r}(N)-\mu N\right\}} &
\end{array}
$$

w_{r} : Probability that number of particles in the system is N and its energy is $E_{r}(N)$

$$
\begin{aligned}
& \langle N\rangle=\lambda \frac{\partial \ln \Xi}{\partial \lambda} \\
& P=\left(\frac{\partial[P V]}{\partial V}\right)_{T, \mu} \\
& S=\left(\frac{\partial[P V]}{\partial T}\right)_{V, \mu} \\
& N=\left(\frac{\partial[p V]}{\partial \mu}\right)_{T, V}
\end{aligned}
$$

Grand Sum of States

$$
\Xi=\sum_{N=0}^{\infty} \lambda^{N} \sum_{n_{1}+n_{2}+\ldots=N} \exp \left\{-\frac{\sum n_{s} \varepsilon_{s}}{k T}\right\}
$$

Corrected M-B Distribution

$$
\Xi=\sum_{N=0}^{\infty} \frac{\lambda^{N} z_{1}^{N}}{N!}=e^{\lambda z_{1}} \quad Z=z_{1}^{N} \quad z_{1}: \text { Sum of states in a particle }
$$

F-D Distribution

$$
\Xi=\prod_{s}\left(1+y_{s}\right) \quad y_{s}=\lambda e^{-\varepsilon_{s} / k T}
$$

B-E Distribution

$$
\Xi=\prod_{s} \frac{1}{1-y_{s}}
$$

Plank's Radiation Formula

Radiance (Energy flow of photons per unit area of the body, solid angle and frequency)

$$
I(\nu, \Omega, T)=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{e^{h \nu / k T}-1}
$$

Energy density of photons in the body per frequency

$$
u(\nu, T)=\frac{4 \pi c^{2}}{c^{3}} I(\nu, \Omega, T)=\frac{8 \pi h \nu^{3}}{c^{3}} \frac{1}{e^{h \nu / k T}-1}
$$

